基于分数布朗运动驱动的 FSDE 的欧式期权定价

Qingyang Shu
{"title":"基于分数布朗运动驱动的 FSDE 的欧式期权定价","authors":"Qingyang Shu","doi":"10.54254/2753-8818/34/20241190","DOIUrl":null,"url":null,"abstract":"In the actual financial market, the classical Black-Scholes (B-S) model cant perfectly describe the process of stock price. Besides, memory effect is an important phenomenon in financial systems. Thus, in this paper, we establish a fractional order stochastic differential equations (FSDE) which is driven by fractional Brownian motion (fBm) to describe the effect of noise memory and trend memory in financial pricing. Finally, we derive a European option pricing formula based on the established model. After conducting an empirical analysis based on the SSE 50ETF, we find that the established model performs better than the traditional one.","PeriodicalId":489336,"journal":{"name":"Theoretical and Natural Science","volume":"106 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"European Option Pricing Based on FSDE Driven by Fractional Brownian Motion\",\"authors\":\"Qingyang Shu\",\"doi\":\"10.54254/2753-8818/34/20241190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the actual financial market, the classical Black-Scholes (B-S) model cant perfectly describe the process of stock price. Besides, memory effect is an important phenomenon in financial systems. Thus, in this paper, we establish a fractional order stochastic differential equations (FSDE) which is driven by fractional Brownian motion (fBm) to describe the effect of noise memory and trend memory in financial pricing. Finally, we derive a European option pricing formula based on the established model. After conducting an empirical analysis based on the SSE 50ETF, we find that the established model performs better than the traditional one.\",\"PeriodicalId\":489336,\"journal\":{\"name\":\"Theoretical and Natural Science\",\"volume\":\"106 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Natural Science\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.54254/2753-8818/34/20241190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Natural Science","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.54254/2753-8818/34/20241190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在实际金融市场中,经典的布莱克-斯科尔斯(Black-Scholes,B-S)模型并不能完美地描述股票价格的变化过程。此外,记忆效应也是金融系统中的一个重要现象。因此,本文建立了由分数布朗运动(fBm)驱动的分数阶随机微分方程(FSDE)来描述金融定价中的噪声记忆和趋势记忆效应。最后,我们根据建立的模型推导出欧式期权定价公式。在基于上证 50ETF 进行实证分析后,我们发现所建立的模型比传统模型表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
European Option Pricing Based on FSDE Driven by Fractional Brownian Motion
In the actual financial market, the classical Black-Scholes (B-S) model cant perfectly describe the process of stock price. Besides, memory effect is an important phenomenon in financial systems. Thus, in this paper, we establish a fractional order stochastic differential equations (FSDE) which is driven by fractional Brownian motion (fBm) to describe the effect of noise memory and trend memory in financial pricing. Finally, we derive a European option pricing formula based on the established model. After conducting an empirical analysis based on the SSE 50ETF, we find that the established model performs better than the traditional one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信