表征构造反向数学中柯尼希两难和弱柯尼希两难之间差异的选择原则

Computability Pub Date : 2024-04-02 DOI:10.3233/com-230478
Makoto Fujiwara, Takako Nemoto
{"title":"表征构造反向数学中柯尼希两难和弱柯尼希两难之间差异的选择原则","authors":"Makoto Fujiwara, Takako Nemoto","doi":"10.3233/com-230478","DOIUrl":null,"url":null,"abstract":"In the context of constructive reverse mathematics, we characterize the difference between König’s lemma and weak König’s lemma by a particular fragment of the countable choice principle. Specifically, we show that König’s lemma can be decomposed into weak König’s lemma and the choice principle over a weak intuitionistic two-sorted arithmetic.","PeriodicalId":515920,"journal":{"name":"Computability","volume":"40 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Choice principles characterizing the difference between König’s lemma and weak König’s lemma in constructive reverse mathematics\",\"authors\":\"Makoto Fujiwara, Takako Nemoto\",\"doi\":\"10.3233/com-230478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of constructive reverse mathematics, we characterize the difference between König’s lemma and weak König’s lemma by a particular fragment of the countable choice principle. Specifically, we show that König’s lemma can be decomposed into weak König’s lemma and the choice principle over a weak intuitionistic two-sorted arithmetic.\",\"PeriodicalId\":515920,\"journal\":{\"name\":\"Computability\",\"volume\":\"40 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/com-230478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/com-230478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在构造反向数学的背景下,我们通过可数选择原理的一个特殊片段来描述柯尼希佯谬与弱柯尼希佯谬之间的区别。具体地说,我们证明了柯尼希难题可以分解为弱柯尼希难题和弱直观二排序算术的选择原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Choice principles characterizing the difference between König’s lemma and weak König’s lemma in constructive reverse mathematics
In the context of constructive reverse mathematics, we characterize the difference between König’s lemma and weak König’s lemma by a particular fragment of the countable choice principle. Specifically, we show that König’s lemma can be decomposed into weak König’s lemma and the choice principle over a weak intuitionistic two-sorted arithmetic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信