{"title":"表征构造反向数学中柯尼希两难和弱柯尼希两难之间差异的选择原则","authors":"Makoto Fujiwara, Takako Nemoto","doi":"10.3233/com-230478","DOIUrl":null,"url":null,"abstract":"In the context of constructive reverse mathematics, we characterize the difference between König’s lemma and weak König’s lemma by a particular fragment of the countable choice principle. Specifically, we show that König’s lemma can be decomposed into weak König’s lemma and the choice principle over a weak intuitionistic two-sorted arithmetic.","PeriodicalId":515920,"journal":{"name":"Computability","volume":"40 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Choice principles characterizing the difference between König’s lemma and weak König’s lemma in constructive reverse mathematics\",\"authors\":\"Makoto Fujiwara, Takako Nemoto\",\"doi\":\"10.3233/com-230478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of constructive reverse mathematics, we characterize the difference between König’s lemma and weak König’s lemma by a particular fragment of the countable choice principle. Specifically, we show that König’s lemma can be decomposed into weak König’s lemma and the choice principle over a weak intuitionistic two-sorted arithmetic.\",\"PeriodicalId\":515920,\"journal\":{\"name\":\"Computability\",\"volume\":\"40 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/com-230478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/com-230478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Choice principles characterizing the difference between König’s lemma and weak König’s lemma in constructive reverse mathematics
In the context of constructive reverse mathematics, we characterize the difference between König’s lemma and weak König’s lemma by a particular fragment of the countable choice principle. Specifically, we show that König’s lemma can be decomposed into weak König’s lemma and the choice principle over a weak intuitionistic two-sorted arithmetic.