利用网格划分方法的自适应神经模糊推理系统进行降雨预报,以减轻洪水灾害

Fatkhurokhman Fauzi, Relly Erlinda, Prizka Rismawati Arum
{"title":"利用网格划分方法的自适应神经模糊推理系统进行降雨预报,以减轻洪水灾害","authors":"Fatkhurokhman Fauzi, Relly Erlinda, Prizka Rismawati Arum","doi":"10.31764/jtam.v8i2.20385","DOIUrl":null,"url":null,"abstract":"Hydrometeorological disasters are one of the disasters that often occur in big cities like Semarang. Hydrometeorological disasters that often occur are floods caused by high-intensity rainfall in the area. Early mitigation needs to be done by knowing about future rain. Rainfall data in Semarang City fluctuates, so the Adaptive Neuro-Fuzzy Inference System (ANFIS) method approach is very appropriate. This research will use the Grid Partitioning (GP) approach to produce more accurate forecasting. The data used in this research is daily rainfall observation data from the Meteorology Climatology Geophysics Agency (BMKG). The membership functions used are Gaussian and Generalized Bell. The two membership functions will be compared based on the RMSE and MAPE values to get the best one. The data used in this research is daily rainfall data. Rainfall in Semarang City every month experiences anomalies, which can result in flood disasters. The ANFIS-GP method with a Gaussian membership function is the best, with an RMSE value of 0.0898 and a MAPE of 5.2911. Based on the forecast results for the next thirty days, a rainfall anomaly of 102.53 mm on the thirtieth day could cause a flood disaster. ","PeriodicalId":489521,"journal":{"name":"JTAM (Jurnal Teori dan Aplikasi Matematika)","volume":"254 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainfall Forecasting Using an Adaptive Neuro-Fuzzy Inference System with a Grid Partitioning Approach to Mitigating Flood Disasters\",\"authors\":\"Fatkhurokhman Fauzi, Relly Erlinda, Prizka Rismawati Arum\",\"doi\":\"10.31764/jtam.v8i2.20385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrometeorological disasters are one of the disasters that often occur in big cities like Semarang. Hydrometeorological disasters that often occur are floods caused by high-intensity rainfall in the area. Early mitigation needs to be done by knowing about future rain. Rainfall data in Semarang City fluctuates, so the Adaptive Neuro-Fuzzy Inference System (ANFIS) method approach is very appropriate. This research will use the Grid Partitioning (GP) approach to produce more accurate forecasting. The data used in this research is daily rainfall observation data from the Meteorology Climatology Geophysics Agency (BMKG). The membership functions used are Gaussian and Generalized Bell. The two membership functions will be compared based on the RMSE and MAPE values to get the best one. The data used in this research is daily rainfall data. Rainfall in Semarang City every month experiences anomalies, which can result in flood disasters. The ANFIS-GP method with a Gaussian membership function is the best, with an RMSE value of 0.0898 and a MAPE of 5.2911. Based on the forecast results for the next thirty days, a rainfall anomaly of 102.53 mm on the thirtieth day could cause a flood disaster. \",\"PeriodicalId\":489521,\"journal\":{\"name\":\"JTAM (Jurnal Teori dan Aplikasi Matematika)\",\"volume\":\"254 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JTAM (Jurnal Teori dan Aplikasi Matematika)\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.31764/jtam.v8i2.20385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JTAM (Jurnal Teori dan Aplikasi Matematika)","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.31764/jtam.v8i2.20385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水文气象灾害是三宝垄等大城市经常发生的灾害之一。经常发生的水文气象灾害是该地区高强度降雨引发的洪水。需要通过了解未来的降雨情况来及早减轻灾害。三宝垄市的降雨数据起伏不定,因此自适应神经模糊推理系统(ANFIS)方法非常适合。本研究将使用网格划分(GP)方法来进行更准确的预测。本研究使用的数据是气象气候地球物理局(BMKG)的每日降雨量观测数据。使用的成员函数是高斯和广义贝尔。将根据 RMSE 和 MAPE 值对这两个成员函数进行比较,以选出最佳成员函数。本研究使用的数据是每日降雨量数据。三宝垄市每月的降雨量都会出现异常,从而导致洪水灾害。采用高斯成员函数的 ANFIS-GP 方法效果最佳,其 RMSE 值为 0.0898,MAPE 为 5.2911。根据未来 30 天的预测结果,第 30 天的降雨量异常值为 102.53 毫米,可能会导致洪水灾害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rainfall Forecasting Using an Adaptive Neuro-Fuzzy Inference System with a Grid Partitioning Approach to Mitigating Flood Disasters
Hydrometeorological disasters are one of the disasters that often occur in big cities like Semarang. Hydrometeorological disasters that often occur are floods caused by high-intensity rainfall in the area. Early mitigation needs to be done by knowing about future rain. Rainfall data in Semarang City fluctuates, so the Adaptive Neuro-Fuzzy Inference System (ANFIS) method approach is very appropriate. This research will use the Grid Partitioning (GP) approach to produce more accurate forecasting. The data used in this research is daily rainfall observation data from the Meteorology Climatology Geophysics Agency (BMKG). The membership functions used are Gaussian and Generalized Bell. The two membership functions will be compared based on the RMSE and MAPE values to get the best one. The data used in this research is daily rainfall data. Rainfall in Semarang City every month experiences anomalies, which can result in flood disasters. The ANFIS-GP method with a Gaussian membership function is the best, with an RMSE value of 0.0898 and a MAPE of 5.2911. Based on the forecast results for the next thirty days, a rainfall anomaly of 102.53 mm on the thirtieth day could cause a flood disaster. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信