{"title":"通过综合水葫芦系统高效处理废水:混凝土的进展与应用","authors":"Ananthakumar Ayyadurai, M. M. Saravanan, M. Devi","doi":"10.17222/mit.2023.914","DOIUrl":null,"url":null,"abstract":"This research focuses on enhancing water quality for concrete construction by utilizing treated wastewater from wetlands. The study employs a dual-stage treatment process involving charcoal and aggregate layers for primary treatment, followed by water hyacinths for secondary treatment. Investigating water hyacinths’ ability to absorb nutrients and contaminants from wastewater is a unique aspect of the study, offering a potential solution for soil and water remediation. Water hyacinths, especially stems and leaves, act as natural filters, effectively indicating heavy-metal pollution in tropical regions. The primary goal is heavy-metal removal from wastewater, allowing treated-water use in concrete production at varying proportions (20 %, 40 %, 60 %, 80 %, and 100 %). Silica fume at 15 % concentration is incorporated to enhance the concrete’s durability. Concrete specimens undergo thorough preparation and mechanical property evaluations, compared to conventional M20-grade concrete. The results reveal improvements in mechanical properties, particularly with 80 % treated wastewater in the mix. The dual-stage treatment process removes heavy metals, and the inclusion of silica fume enhances the concrete’s durability and resistance.","PeriodicalId":0,"journal":{"name":"","volume":"823 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFFICIENT WASTEWATER TREATMENT THROUGH INTEGRATED WATER HYACINTH SYSTEMS: ADVANCES AND APPLICATIONS IN CONCRETE\",\"authors\":\"Ananthakumar Ayyadurai, M. M. Saravanan, M. Devi\",\"doi\":\"10.17222/mit.2023.914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research focuses on enhancing water quality for concrete construction by utilizing treated wastewater from wetlands. The study employs a dual-stage treatment process involving charcoal and aggregate layers for primary treatment, followed by water hyacinths for secondary treatment. Investigating water hyacinths’ ability to absorb nutrients and contaminants from wastewater is a unique aspect of the study, offering a potential solution for soil and water remediation. Water hyacinths, especially stems and leaves, act as natural filters, effectively indicating heavy-metal pollution in tropical regions. The primary goal is heavy-metal removal from wastewater, allowing treated-water use in concrete production at varying proportions (20 %, 40 %, 60 %, 80 %, and 100 %). Silica fume at 15 % concentration is incorporated to enhance the concrete’s durability. Concrete specimens undergo thorough preparation and mechanical property evaluations, compared to conventional M20-grade concrete. The results reveal improvements in mechanical properties, particularly with 80 % treated wastewater in the mix. The dual-stage treatment process removes heavy metals, and the inclusion of silica fume enhances the concrete’s durability and resistance.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":\"823 \",\"pages\":\"\"},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17222/mit.2023.914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17222/mit.2023.914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EFFICIENT WASTEWATER TREATMENT THROUGH INTEGRATED WATER HYACINTH SYSTEMS: ADVANCES AND APPLICATIONS IN CONCRETE
This research focuses on enhancing water quality for concrete construction by utilizing treated wastewater from wetlands. The study employs a dual-stage treatment process involving charcoal and aggregate layers for primary treatment, followed by water hyacinths for secondary treatment. Investigating water hyacinths’ ability to absorb nutrients and contaminants from wastewater is a unique aspect of the study, offering a potential solution for soil and water remediation. Water hyacinths, especially stems and leaves, act as natural filters, effectively indicating heavy-metal pollution in tropical regions. The primary goal is heavy-metal removal from wastewater, allowing treated-water use in concrete production at varying proportions (20 %, 40 %, 60 %, 80 %, and 100 %). Silica fume at 15 % concentration is incorporated to enhance the concrete’s durability. Concrete specimens undergo thorough preparation and mechanical property evaluations, compared to conventional M20-grade concrete. The results reveal improvements in mechanical properties, particularly with 80 % treated wastewater in the mix. The dual-stage treatment process removes heavy metals, and the inclusion of silica fume enhances the concrete’s durability and resistance.