I. Vogeler, Uttam Kumar, Leif Knudsen, E. Hansen, Val Snow, I. Thomsen
{"title":"利用 APSIM 模型开发基于氮状况确定冬小麦氮肥需求量的算法","authors":"I. Vogeler, Uttam Kumar, Leif Knudsen, E. Hansen, Val Snow, I. Thomsen","doi":"10.3390/crops4020010","DOIUrl":null,"url":null,"abstract":"The determination of optimum nitrogen (N) fertilisation rates, which maximise yields and minimise N losses, remains problematic due to unknown upcoming crop requirements and near-future supply by the soil. Remote sensing can be used for determining the crop N status and to assess the spatial variability within a field or between fields. This can be used to improve N fertilisation, provided that the optimal fertilisation rate at the time of fertiliser application for an expected yield is known. Using the APSIM-wheat model, we developed an algorithm that relates the N status of the plants at early development stages to the yield response to N. Simulations were performed for winter wheat under growth conditions in Denmark. To obtain a range of different N status in the biomass at early growth stages, the soil N in autumn was varied from 20 to 180 kg N ha−1, and at BBCH23, fertiliser was applied at a rate of 50 kg N ha−1. In a full factorial setup, additional N fertiliser was applied ranging from 0 to 150 kg N ha−1 during three different development stages (BBCH30, 32, and 37). The algorithm was evaluated by comparing model outputs with a standard N application of 50 kg N ha−1 at BBCH23 and 150 kg N ha−1 at BBCH30. The evaluation showed that, depending on the N status of the soil, the algorithm either provided higher or lower optimal N fertilisation rates when targeting 95% of the maximum yield, and these affected the grain yield and the grain N, as well as the amount of N leaching. Split application of fertiliser into three applications was generally beneficial, with decreased product-related N leaching of up to nearly 30%. Further testing of the model under different environmental conditions is needed before such an algorithm can be used to guide N fertilisation.","PeriodicalId":505308,"journal":{"name":"Crops","volume":"273 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Algorithm for Determining N Fertiliser Requirements of Winter Wheat Based on N Status Using APSIM Modelling\",\"authors\":\"I. Vogeler, Uttam Kumar, Leif Knudsen, E. Hansen, Val Snow, I. Thomsen\",\"doi\":\"10.3390/crops4020010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The determination of optimum nitrogen (N) fertilisation rates, which maximise yields and minimise N losses, remains problematic due to unknown upcoming crop requirements and near-future supply by the soil. Remote sensing can be used for determining the crop N status and to assess the spatial variability within a field or between fields. This can be used to improve N fertilisation, provided that the optimal fertilisation rate at the time of fertiliser application for an expected yield is known. Using the APSIM-wheat model, we developed an algorithm that relates the N status of the plants at early development stages to the yield response to N. Simulations were performed for winter wheat under growth conditions in Denmark. To obtain a range of different N status in the biomass at early growth stages, the soil N in autumn was varied from 20 to 180 kg N ha−1, and at BBCH23, fertiliser was applied at a rate of 50 kg N ha−1. In a full factorial setup, additional N fertiliser was applied ranging from 0 to 150 kg N ha−1 during three different development stages (BBCH30, 32, and 37). The algorithm was evaluated by comparing model outputs with a standard N application of 50 kg N ha−1 at BBCH23 and 150 kg N ha−1 at BBCH30. The evaluation showed that, depending on the N status of the soil, the algorithm either provided higher or lower optimal N fertilisation rates when targeting 95% of the maximum yield, and these affected the grain yield and the grain N, as well as the amount of N leaching. Split application of fertiliser into three applications was generally beneficial, with decreased product-related N leaching of up to nearly 30%. Further testing of the model under different environmental conditions is needed before such an algorithm can be used to guide N fertilisation.\",\"PeriodicalId\":505308,\"journal\":{\"name\":\"Crops\",\"volume\":\"273 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/crops4020010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/crops4020010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Algorithm for Determining N Fertiliser Requirements of Winter Wheat Based on N Status Using APSIM Modelling
The determination of optimum nitrogen (N) fertilisation rates, which maximise yields and minimise N losses, remains problematic due to unknown upcoming crop requirements and near-future supply by the soil. Remote sensing can be used for determining the crop N status and to assess the spatial variability within a field or between fields. This can be used to improve N fertilisation, provided that the optimal fertilisation rate at the time of fertiliser application for an expected yield is known. Using the APSIM-wheat model, we developed an algorithm that relates the N status of the plants at early development stages to the yield response to N. Simulations were performed for winter wheat under growth conditions in Denmark. To obtain a range of different N status in the biomass at early growth stages, the soil N in autumn was varied from 20 to 180 kg N ha−1, and at BBCH23, fertiliser was applied at a rate of 50 kg N ha−1. In a full factorial setup, additional N fertiliser was applied ranging from 0 to 150 kg N ha−1 during three different development stages (BBCH30, 32, and 37). The algorithm was evaluated by comparing model outputs with a standard N application of 50 kg N ha−1 at BBCH23 and 150 kg N ha−1 at BBCH30. The evaluation showed that, depending on the N status of the soil, the algorithm either provided higher or lower optimal N fertilisation rates when targeting 95% of the maximum yield, and these affected the grain yield and the grain N, as well as the amount of N leaching. Split application of fertiliser into three applications was generally beneficial, with decreased product-related N leaching of up to nearly 30%. Further testing of the model under different environmental conditions is needed before such an algorithm can be used to guide N fertilisation.