{"title":"低含量 ESIPT 染料官能化淀粉的固态发光与大斯托克斯偏移","authors":"Emerson Colonetti, L. C. da Luz, F. Rodembusch","doi":"10.3390/colorants3020007","DOIUrl":null,"url":null,"abstract":"Herein, we present the preparation of solid-state photoactive starches with a large Stokes shift, along with the resulting materials. In this investigation, 2-(2′-hydroxyphenyl)benzazole derivatives responsive to intramolecular proton transfer in the excited state (ESIPT) were covalently bonded to the polymeric structure of starch through a reaction involving an isothiocyanate group and the hydroxyl groups of starch. These compounds exhibit absorption at approximately 350 nm, which is related to fully spin- and symmetry-allowed π → π* electronic transitions, and solid-state fluorescence at approximately 500 nm, which features a significant separation between the absorption and emission maxima (~9000 cm−1). Due to the minimal use of fluorophores in functionalized starch preparation, this modification does not affect the original properties of the starch. Finally, photoactive starch-based films with significantly high transparency were successfully produced.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid-State Luminescence with a Large Stokes Shift in Starch Functionalized with Low-Content ESIPT Dye\",\"authors\":\"Emerson Colonetti, L. C. da Luz, F. Rodembusch\",\"doi\":\"10.3390/colorants3020007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we present the preparation of solid-state photoactive starches with a large Stokes shift, along with the resulting materials. In this investigation, 2-(2′-hydroxyphenyl)benzazole derivatives responsive to intramolecular proton transfer in the excited state (ESIPT) were covalently bonded to the polymeric structure of starch through a reaction involving an isothiocyanate group and the hydroxyl groups of starch. These compounds exhibit absorption at approximately 350 nm, which is related to fully spin- and symmetry-allowed π → π* electronic transitions, and solid-state fluorescence at approximately 500 nm, which features a significant separation between the absorption and emission maxima (~9000 cm−1). Due to the minimal use of fluorophores in functionalized starch preparation, this modification does not affect the original properties of the starch. Finally, photoactive starch-based films with significantly high transparency were successfully produced.\",\"PeriodicalId\":10539,\"journal\":{\"name\":\"Colorants\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colorants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/colorants3020007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colorants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colorants3020007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solid-State Luminescence with a Large Stokes Shift in Starch Functionalized with Low-Content ESIPT Dye
Herein, we present the preparation of solid-state photoactive starches with a large Stokes shift, along with the resulting materials. In this investigation, 2-(2′-hydroxyphenyl)benzazole derivatives responsive to intramolecular proton transfer in the excited state (ESIPT) were covalently bonded to the polymeric structure of starch through a reaction involving an isothiocyanate group and the hydroxyl groups of starch. These compounds exhibit absorption at approximately 350 nm, which is related to fully spin- and symmetry-allowed π → π* electronic transitions, and solid-state fluorescence at approximately 500 nm, which features a significant separation between the absorption and emission maxima (~9000 cm−1). Due to the minimal use of fluorophores in functionalized starch preparation, this modification does not affect the original properties of the starch. Finally, photoactive starch-based films with significantly high transparency were successfully produced.