因特蛋白介导的甲状腺激素生物传感器:实现激素治疗的可控给药

Quim Martí-Baena, Andreu Pascuet-Fontanet, Tomas Berjaga-Buisan, Miriam Caravaca-Rodríguez, Jaume Puig-Costa-Jussà, A. Sanchez-Mejias, Dimitrije Ivančić, Sira Mogas-Díez, Marc Güell, Javier Macia
{"title":"因特蛋白介导的甲状腺激素生物传感器:实现激素治疗的可控给药","authors":"Quim Martí-Baena, Andreu Pascuet-Fontanet, Tomas Berjaga-Buisan, Miriam Caravaca-Rodríguez, Jaume Puig-Costa-Jussà, A. Sanchez-Mejias, Dimitrije Ivančić, Sira Mogas-Díez, Marc Güell, Javier Macia","doi":"10.3389/fsysb.2024.1270071","DOIUrl":null,"url":null,"abstract":"Although blood sampling and medical imaging are well-established techniques in clinical diagnostics, they often require long post-processing procedures. Fast and simple quantification of signaling molecules can enable efficient health monitoring and improve diagnoses. Thyroid hormones (THs) treatment relies on trial-and-error dose adjustments, and requires constant tracking via blood tests. Thus, a fast and reliable method that can constantly track THs levels could substantially improve patient quality of life by reducing their visits to doctors. Synthetic biosensors have shown to be inexpensive and easy tools for sensing molecules, with their use in healthcare increasing over time. This study describes the construction of an engineered THs bacterial biosensor, consisting of a split-intein-based TH receptor ligand binding domain (LBD) biosensor that reconstitutes green fluorescence protein (GFP) after binding to TH. This biosensor could quantitatively measure THs concentrations by evaluating fluorescence intensity. In vitro sensing using Escherichia coli produced GFP over a wide dynamic range. The biosensor was further optimized by adding a double LBD, which enhanced its dynamic range until it reached healthy physiological conditions. Moreover, a mathematical model was developed to assess the dynamic properties of the biosensor and to provide a basis for the characterization of other intein-mediated biosensors. This type of biosensor can be used as the basis for novel treatments of thyroid diseases and can be adapted to measure the concentrations of other hormones, giving rise to a series of mathematically characterized modular biosensors.","PeriodicalId":73109,"journal":{"name":"Frontiers in systems biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intein-mediated thyroid hormone biosensors: towards controlled delivery of hormone therapy\",\"authors\":\"Quim Martí-Baena, Andreu Pascuet-Fontanet, Tomas Berjaga-Buisan, Miriam Caravaca-Rodríguez, Jaume Puig-Costa-Jussà, A. Sanchez-Mejias, Dimitrije Ivančić, Sira Mogas-Díez, Marc Güell, Javier Macia\",\"doi\":\"10.3389/fsysb.2024.1270071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although blood sampling and medical imaging are well-established techniques in clinical diagnostics, they often require long post-processing procedures. Fast and simple quantification of signaling molecules can enable efficient health monitoring and improve diagnoses. Thyroid hormones (THs) treatment relies on trial-and-error dose adjustments, and requires constant tracking via blood tests. Thus, a fast and reliable method that can constantly track THs levels could substantially improve patient quality of life by reducing their visits to doctors. Synthetic biosensors have shown to be inexpensive and easy tools for sensing molecules, with their use in healthcare increasing over time. This study describes the construction of an engineered THs bacterial biosensor, consisting of a split-intein-based TH receptor ligand binding domain (LBD) biosensor that reconstitutes green fluorescence protein (GFP) after binding to TH. This biosensor could quantitatively measure THs concentrations by evaluating fluorescence intensity. In vitro sensing using Escherichia coli produced GFP over a wide dynamic range. The biosensor was further optimized by adding a double LBD, which enhanced its dynamic range until it reached healthy physiological conditions. Moreover, a mathematical model was developed to assess the dynamic properties of the biosensor and to provide a basis for the characterization of other intein-mediated biosensors. This type of biosensor can be used as the basis for novel treatments of thyroid diseases and can be adapted to measure the concentrations of other hormones, giving rise to a series of mathematically characterized modular biosensors.\",\"PeriodicalId\":73109,\"journal\":{\"name\":\"Frontiers in systems biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fsysb.2024.1270071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsysb.2024.1270071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管血液采样和医学成像是临床诊断中成熟的技术,但它们往往需要长时间的后处理程序。对信号分子进行快速、简单的量化可以实现高效的健康监测并改进诊断。甲状腺激素(THs)的治疗依赖于反复试验和错误的剂量调整,并且需要通过血液检测进行持续跟踪。因此,一种能够持续跟踪甲状腺激素水平的快速而可靠的方法可以减少病人看医生的次数,从而大大提高病人的生活质量。合成生物传感器已被证明是一种廉价、简便的分子传感工具,其在医疗保健领域的应用也在不断增加。本研究描述了一种工程化 THs 细菌生物传感器的构建过程,它由一个基于分裂内毒素的 TH 受体配体结合域(LBD)生物传感器组成,该传感器在与 TH 结合后可重组绿色荧光蛋白(GFP)。这种生物传感器可通过评估荧光强度来定量测量 THs 的浓度。利用大肠杆菌进行的体外传感可在很宽的动态范围内产生绿色荧光蛋白。通过添加双 LBD 进一步优化了生物传感器,从而提高了其动态范围,直至达到健康生理条件。此外,还建立了一个数学模型来评估该生物传感器的动态特性,并为鉴定其他内含素介导的生物传感器提供依据。这种生物传感器可作为甲状腺疾病新疗法的基础,也可用于测量其他激素的浓度,从而产生一系列数学特征模块化生物传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intein-mediated thyroid hormone biosensors: towards controlled delivery of hormone therapy
Although blood sampling and medical imaging are well-established techniques in clinical diagnostics, they often require long post-processing procedures. Fast and simple quantification of signaling molecules can enable efficient health monitoring and improve diagnoses. Thyroid hormones (THs) treatment relies on trial-and-error dose adjustments, and requires constant tracking via blood tests. Thus, a fast and reliable method that can constantly track THs levels could substantially improve patient quality of life by reducing their visits to doctors. Synthetic biosensors have shown to be inexpensive and easy tools for sensing molecules, with their use in healthcare increasing over time. This study describes the construction of an engineered THs bacterial biosensor, consisting of a split-intein-based TH receptor ligand binding domain (LBD) biosensor that reconstitutes green fluorescence protein (GFP) after binding to TH. This biosensor could quantitatively measure THs concentrations by evaluating fluorescence intensity. In vitro sensing using Escherichia coli produced GFP over a wide dynamic range. The biosensor was further optimized by adding a double LBD, which enhanced its dynamic range until it reached healthy physiological conditions. Moreover, a mathematical model was developed to assess the dynamic properties of the biosensor and to provide a basis for the characterization of other intein-mediated biosensors. This type of biosensor can be used as the basis for novel treatments of thyroid diseases and can be adapted to measure the concentrations of other hormones, giving rise to a series of mathematically characterized modular biosensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信