通过树突整合进行时空模式识别的有机人工体节

Michele Di Lauro, Federico Rondelli, Anna De Salvo, Alessandro Corsini, Matteo Genitoni, Pierpaolo Greco, Mauro Murgia, L. Fadiga, Fabio Biscarini
{"title":"通过树突整合进行时空模式识别的有机人工体节","authors":"Michele Di Lauro, Federico Rondelli, Anna De Salvo, Alessandro Corsini, Matteo Genitoni, Pierpaolo Greco, Mauro Murgia, L. Fadiga, Fabio Biscarini","doi":"10.1088/2634-4386/ad3a96","DOIUrl":null,"url":null,"abstract":"\n A novel organic neuromorphic device performing pattern classification is presented and demonstrated. It features an artificial soma capable of dendritic integration from three pre-synaptic neurons. The time response of the interface between electrolytic solutions and organic mixed ionic-electronic conductors is proposed as the sole computational feature for pattern recognition, and it is easily tuned in the organic dendritic integrator by simply controlling electrolyte ionic strength. The classifier is benchmarked in speech-recognition experiments, with a sample of fourteen words, encoded either from audio tracks or from kinematic data, showing excellent discrimination performances in a planar, miniaturizable, fully passive device, designed to be promptly integrated in more complex architectures where on-board pattern classification is required.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"8 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An organic artificial soma for spatio-temporal pattern recognition via dendritic integration\",\"authors\":\"Michele Di Lauro, Federico Rondelli, Anna De Salvo, Alessandro Corsini, Matteo Genitoni, Pierpaolo Greco, Mauro Murgia, L. Fadiga, Fabio Biscarini\",\"doi\":\"10.1088/2634-4386/ad3a96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A novel organic neuromorphic device performing pattern classification is presented and demonstrated. It features an artificial soma capable of dendritic integration from three pre-synaptic neurons. The time response of the interface between electrolytic solutions and organic mixed ionic-electronic conductors is proposed as the sole computational feature for pattern recognition, and it is easily tuned in the organic dendritic integrator by simply controlling electrolyte ionic strength. The classifier is benchmarked in speech-recognition experiments, with a sample of fourteen words, encoded either from audio tracks or from kinematic data, showing excellent discrimination performances in a planar, miniaturizable, fully passive device, designed to be promptly integrated in more complex architectures where on-board pattern classification is required.\",\"PeriodicalId\":198030,\"journal\":{\"name\":\"Neuromorphic Computing and Engineering\",\"volume\":\"8 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorphic Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/ad3a96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/ad3a96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍并演示了一种新型的有机神经形态设备,可进行模式分类。它的特点是具有一个人工体,能够整合来自三个突触前神经元的树突。电解溶液与有机离子电子混合导体之间界面的时间响应被提出作为模式识别的唯一计算特征,只需控制电解质离子强度,就能轻松地在有机树突整合器中对其进行调整。该分类器在语音识别实验中进行了基准测试,对来自音轨或运动学数据的 14 个单词进行了编码,结果表明,在一个平面、微型、全无源器件中,该分类器具有出色的辨别性能,可迅速集成到需要板载模式分类的更复杂架构中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An organic artificial soma for spatio-temporal pattern recognition via dendritic integration
A novel organic neuromorphic device performing pattern classification is presented and demonstrated. It features an artificial soma capable of dendritic integration from three pre-synaptic neurons. The time response of the interface between electrolytic solutions and organic mixed ionic-electronic conductors is proposed as the sole computational feature for pattern recognition, and it is easily tuned in the organic dendritic integrator by simply controlling electrolyte ionic strength. The classifier is benchmarked in speech-recognition experiments, with a sample of fourteen words, encoded either from audio tracks or from kinematic data, showing excellent discrimination performances in a planar, miniaturizable, fully passive device, designed to be promptly integrated in more complex architectures where on-board pattern classification is required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信