量子生成模型的特征

Carlos A. Riofrío, Oliver Mitevski, Caitlin Jones, Florian Krellner, Aleksandar Vučković, Joseph Doetsch, Johannes Klepsch, T. Ehmer, André Luckow
{"title":"量子生成模型的特征","authors":"Carlos A. Riofrío, Oliver Mitevski, Caitlin Jones, Florian Krellner, Aleksandar Vučković, Joseph Doetsch, Johannes Klepsch, T. Ehmer, André Luckow","doi":"10.1145/3655027","DOIUrl":null,"url":null,"abstract":"\n Quantum generative modeling is a growing area of interest for industry-relevant applications. This work systematically compares a broad range of techniques to guide quantum computing practitioners when deciding which models and methods to use in their applications. We compare fundamentally different architectural ansatzes of parametric quantum circuits: 1. A\n continuous\n architecture, which produces continuous-valued data samples, and 2. a\n discrete\n architecture, which samples on a discrete grid. We also compare the performance of different data transformations: the min-max and the probability integral transforms. We use two popular training methods: 1.  quantum circuit Born machines (QCBM), and 2.  quantum generative adversarial networks (QGAN). We study their performance and trade-offs as the number of model parameters increases, with a baseline comparison of similarly trained classical neural networks. The study is performed on six low-dimensional synthetic and two real financial data sets. Our two key findings are that: 1.  For all data sets, our quantum models require similar or fewer parameters than their classical counterparts. In the extreme case, the quantum models require two orders of magnitude less parameters. 2.  We empirically find that a variant of the\n discrete\n architecture, which learns the copula of the probability distribution, outperforms all other methods.\n","PeriodicalId":504393,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"24 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of quantum generative models\",\"authors\":\"Carlos A. Riofrío, Oliver Mitevski, Caitlin Jones, Florian Krellner, Aleksandar Vučković, Joseph Doetsch, Johannes Klepsch, T. Ehmer, André Luckow\",\"doi\":\"10.1145/3655027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Quantum generative modeling is a growing area of interest for industry-relevant applications. This work systematically compares a broad range of techniques to guide quantum computing practitioners when deciding which models and methods to use in their applications. We compare fundamentally different architectural ansatzes of parametric quantum circuits: 1. A\\n continuous\\n architecture, which produces continuous-valued data samples, and 2. a\\n discrete\\n architecture, which samples on a discrete grid. We also compare the performance of different data transformations: the min-max and the probability integral transforms. We use two popular training methods: 1.  quantum circuit Born machines (QCBM), and 2.  quantum generative adversarial networks (QGAN). We study their performance and trade-offs as the number of model parameters increases, with a baseline comparison of similarly trained classical neural networks. The study is performed on six low-dimensional synthetic and two real financial data sets. Our two key findings are that: 1.  For all data sets, our quantum models require similar or fewer parameters than their classical counterparts. In the extreme case, the quantum models require two orders of magnitude less parameters. 2.  We empirically find that a variant of the\\n discrete\\n architecture, which learns the copula of the probability distribution, outperforms all other methods.\\n\",\"PeriodicalId\":504393,\"journal\":{\"name\":\"ACM Transactions on Quantum Computing\",\"volume\":\"24 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Quantum Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3655027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3655027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子生成建模是一个与行业相关的应用领域,越来越受到关注。这项工作系统地比较了各种技术,以指导量子计算从业人员决定在其应用中使用哪种模型和方法。我们从根本上比较了参数量子电路的不同架构:1.产生连续值数据采样的连续架构;2.在离散网格上采样的离散架构。我们还比较了不同数据变换的性能:最小-最大变换和概率积分变换。我们使用两种流行的训练方法:1.量子电路天生机(QCBM);2.量子生成对抗网络(QGAN)。随着模型参数数量的增加,我们研究了它们的性能和权衡,并与经过类似训练的经典神经网络进行了基线比较。研究在六个低维合成数据集和两个真实金融数据集上进行。我们的两个主要发现是1. 对于所有数据集,我们的量子模型所需的参数与其经典模型相似或更少。在极端情况下,量子模型所需的参数要少两个数量级。2. 我们根据经验发现,离散架构的一个变体学习了概率分布的 copula,其性能优于所有其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization of quantum generative models
Quantum generative modeling is a growing area of interest for industry-relevant applications. This work systematically compares a broad range of techniques to guide quantum computing practitioners when deciding which models and methods to use in their applications. We compare fundamentally different architectural ansatzes of parametric quantum circuits: 1. A continuous architecture, which produces continuous-valued data samples, and 2. a discrete architecture, which samples on a discrete grid. We also compare the performance of different data transformations: the min-max and the probability integral transforms. We use two popular training methods: 1.  quantum circuit Born machines (QCBM), and 2.  quantum generative adversarial networks (QGAN). We study their performance and trade-offs as the number of model parameters increases, with a baseline comparison of similarly trained classical neural networks. The study is performed on six low-dimensional synthetic and two real financial data sets. Our two key findings are that: 1.  For all data sets, our quantum models require similar or fewer parameters than their classical counterparts. In the extreme case, the quantum models require two orders of magnitude less parameters. 2.  We empirically find that a variant of the discrete architecture, which learns the copula of the probability distribution, outperforms all other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信