{"title":"基于 GA-ELM 计算模型和数字孪生数据的电网变压器残余寿命预测","authors":"Xiangshang Wang, Chunlin Li, Jianguang Zhang","doi":"10.4108/ew.4896","DOIUrl":null,"url":null,"abstract":"As one of the core equipment of the power grid, the operation status of transformers directly affects the stability and reliability of the power system. To accurately evaluate the remaining life of power grid transformers, a genetic algorithm is applied to optimize the Extreme Learning Machine based on digital twin technology. Then, considering changes in load rate, a residual life prediction model for power grid transformers is constructed. From the results, the error of the research method was within 2℃, with a maximum error of only 1.76℃. The research model converged with a fitness value of 0.04 at 150 iterations. It showed good predictive performance for hot spot temperatures under different load rates, with an average accuracy of 99.97%. Compared with backpropagation models and extreme learning machine models, the research method improved accuracy by 2.85% and 1.01%, respectively, with small and stable prediction errors. It verified the superiority of the research model, indicating that the research method can improve the accuracy of predicting the remaining life for power grid transformers. By monitoring the operation status of transformers in real-time, potential faults can be detected in a timely manner. The maintenance and replacement can be carried out in advance to avoid power outages caused by equipment damage. In addition, the research can provide reference for the planning and design of power systems, and support the stability and reliability of power systems.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"9 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The residual life prediction of power grid transformers based on GA-ELM computational model and digital twin data\",\"authors\":\"Xiangshang Wang, Chunlin Li, Jianguang Zhang\",\"doi\":\"10.4108/ew.4896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the core equipment of the power grid, the operation status of transformers directly affects the stability and reliability of the power system. To accurately evaluate the remaining life of power grid transformers, a genetic algorithm is applied to optimize the Extreme Learning Machine based on digital twin technology. Then, considering changes in load rate, a residual life prediction model for power grid transformers is constructed. From the results, the error of the research method was within 2℃, with a maximum error of only 1.76℃. The research model converged with a fitness value of 0.04 at 150 iterations. It showed good predictive performance for hot spot temperatures under different load rates, with an average accuracy of 99.97%. Compared with backpropagation models and extreme learning machine models, the research method improved accuracy by 2.85% and 1.01%, respectively, with small and stable prediction errors. It verified the superiority of the research model, indicating that the research method can improve the accuracy of predicting the remaining life for power grid transformers. By monitoring the operation status of transformers in real-time, potential faults can be detected in a timely manner. The maintenance and replacement can be carried out in advance to avoid power outages caused by equipment damage. In addition, the research can provide reference for the planning and design of power systems, and support the stability and reliability of power systems.\",\"PeriodicalId\":53458,\"journal\":{\"name\":\"EAI Endorsed Transactions on Energy Web\",\"volume\":\"9 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Energy Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ew.4896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.4896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
The residual life prediction of power grid transformers based on GA-ELM computational model and digital twin data
As one of the core equipment of the power grid, the operation status of transformers directly affects the stability and reliability of the power system. To accurately evaluate the remaining life of power grid transformers, a genetic algorithm is applied to optimize the Extreme Learning Machine based on digital twin technology. Then, considering changes in load rate, a residual life prediction model for power grid transformers is constructed. From the results, the error of the research method was within 2℃, with a maximum error of only 1.76℃. The research model converged with a fitness value of 0.04 at 150 iterations. It showed good predictive performance for hot spot temperatures under different load rates, with an average accuracy of 99.97%. Compared with backpropagation models and extreme learning machine models, the research method improved accuracy by 2.85% and 1.01%, respectively, with small and stable prediction errors. It verified the superiority of the research model, indicating that the research method can improve the accuracy of predicting the remaining life for power grid transformers. By monitoring the operation status of transformers in real-time, potential faults can be detected in a timely manner. The maintenance and replacement can be carried out in advance to avoid power outages caused by equipment damage. In addition, the research can provide reference for the planning and design of power systems, and support the stability and reliability of power systems.
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.