{"title":"扩展 BioMASS,利用外部知识构建数学模型","authors":"Kiwamu Arakane, Hiroaki Imoto, Fabian Ormersbach, Mariko Okada","doi":"10.1093/bioadv/vbae042","DOIUrl":null,"url":null,"abstract":"Abstract Motivation Mechanistic modeling based on ordinary differential equations has led to numerous findings in systems biology by integrating prior knowledge and experimental data. However, the manual curation of knowledge necessary when constructing models poses a bottleneck. As the speed of knowledge accumulation continues to grow, there is a demand for a scalable means of constructing executable models. Results We previously introduced BioMASS—an open-source, Python-based framework–to construct, simulate, and analyze mechanistic models of signaling networks. With one of its features, Text2Model, BioMASS allows users to define models in a natural language-like format, thereby facilitating the construction of large-scale models. We demonstrate that Text2Model can serve as a tool for integrating external knowledge for mathematical modeling by generating Text2Model files from a pathway database or through the use of a large language model, and simulating its dynamics through BioMASS. Our findings reveal the tool's capabilities to encourage exploration from prior knowledge and pave the way for a fully data-driven approach to constructing mathematical models. Availability and implementation The code and documentation for BioMASS are available at https://github.com/biomass-dev/biomass and https://biomass-core.readthedocs.io, respectively. The code used in this article are available at https://github.com/okadalabipr/text2model-from-knowledge.","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending BioMASS to construct mathematical models from external knowledge\",\"authors\":\"Kiwamu Arakane, Hiroaki Imoto, Fabian Ormersbach, Mariko Okada\",\"doi\":\"10.1093/bioadv/vbae042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Motivation Mechanistic modeling based on ordinary differential equations has led to numerous findings in systems biology by integrating prior knowledge and experimental data. However, the manual curation of knowledge necessary when constructing models poses a bottleneck. As the speed of knowledge accumulation continues to grow, there is a demand for a scalable means of constructing executable models. Results We previously introduced BioMASS—an open-source, Python-based framework–to construct, simulate, and analyze mechanistic models of signaling networks. With one of its features, Text2Model, BioMASS allows users to define models in a natural language-like format, thereby facilitating the construction of large-scale models. We demonstrate that Text2Model can serve as a tool for integrating external knowledge for mathematical modeling by generating Text2Model files from a pathway database or through the use of a large language model, and simulating its dynamics through BioMASS. Our findings reveal the tool's capabilities to encourage exploration from prior knowledge and pave the way for a fully data-driven approach to constructing mathematical models. Availability and implementation The code and documentation for BioMASS are available at https://github.com/biomass-dev/biomass and https://biomass-core.readthedocs.io, respectively. The code used in this article are available at https://github.com/okadalabipr/text2model-from-knowledge.\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Extending BioMASS to construct mathematical models from external knowledge
Abstract Motivation Mechanistic modeling based on ordinary differential equations has led to numerous findings in systems biology by integrating prior knowledge and experimental data. However, the manual curation of knowledge necessary when constructing models poses a bottleneck. As the speed of knowledge accumulation continues to grow, there is a demand for a scalable means of constructing executable models. Results We previously introduced BioMASS—an open-source, Python-based framework–to construct, simulate, and analyze mechanistic models of signaling networks. With one of its features, Text2Model, BioMASS allows users to define models in a natural language-like format, thereby facilitating the construction of large-scale models. We demonstrate that Text2Model can serve as a tool for integrating external knowledge for mathematical modeling by generating Text2Model files from a pathway database or through the use of a large language model, and simulating its dynamics through BioMASS. Our findings reveal the tool's capabilities to encourage exploration from prior knowledge and pave the way for a fully data-driven approach to constructing mathematical models. Availability and implementation The code and documentation for BioMASS are available at https://github.com/biomass-dev/biomass and https://biomass-core.readthedocs.io, respectively. The code used in this article are available at https://github.com/okadalabipr/text2model-from-knowledge.