切口作为对比学习的辅助工具,用于检测塑料颗粒中的烧焦痕迹

IF 0.8 Q4 INSTRUMENTS & INSTRUMENTATION
Muen Jin, Michael Heizmann
{"title":"切口作为对比学习的辅助工具,用于检测塑料颗粒中的烧焦痕迹","authors":"Muen Jin, Michael Heizmann","doi":"10.5194/jsss-13-63-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Plastic granules are a common delivery form for creating products in industries such as the plastic manufacturing, construction and automotive ones. In the corresponding sorting process of plastic granules, diverse defect types could appear. Burn marks, which potentially lead to weakened structural integrity of the plastic, are one of the most common types. Thus, plastic granules with burn marks should be filtered out during the sorting process. Artificial intelligence (AI)-based anomaly detection approaches are widely used in the field of visual-based sorting due to the higher accuracy and lower requirement of expert knowledge compared with classic rule-based algorithms (Chandola et al., 2009). In this contribution, a simple data augmentation strategy, cutout, is implemented as a way of simulating defects when combined with a contrastive learning-based methodology and is proven to improve the accuracy of the anomaly detection of burn marks. Different variants of cutout are also evaluated. Specifically, synthetic image data are used due to the lack of real data.\n","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cutout as augmentation in contrastive learning for detecting burn marks in plastic granules\",\"authors\":\"Muen Jin, Michael Heizmann\",\"doi\":\"10.5194/jsss-13-63-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Plastic granules are a common delivery form for creating products in industries such as the plastic manufacturing, construction and automotive ones. In the corresponding sorting process of plastic granules, diverse defect types could appear. Burn marks, which potentially lead to weakened structural integrity of the plastic, are one of the most common types. Thus, plastic granules with burn marks should be filtered out during the sorting process. Artificial intelligence (AI)-based anomaly detection approaches are widely used in the field of visual-based sorting due to the higher accuracy and lower requirement of expert knowledge compared with classic rule-based algorithms (Chandola et al., 2009). In this contribution, a simple data augmentation strategy, cutout, is implemented as a way of simulating defects when combined with a contrastive learning-based methodology and is proven to improve the accuracy of the anomaly detection of burn marks. Different variants of cutout are also evaluated. Specifically, synthetic image data are used due to the lack of real data.\\n\",\"PeriodicalId\":17167,\"journal\":{\"name\":\"Journal of Sensors and Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensors and Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/jsss-13-63-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/jsss-13-63-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

摘要塑料颗粒是塑料制造、建筑和汽车等行业制造产品的常见交付形式。在塑料颗粒的相应分拣过程中,可能会出现不同类型的缺陷。烧痕是最常见的缺陷类型之一,它可能导致塑料结构完整性的削弱。因此,在分拣过程中应过滤掉有烧痕的塑料颗粒。与传统的基于规则的算法相比,基于人工智能(AI)的异常检测方法具有更高的准确性,对专家知识的要求也更低(Chandola 等人,2009 年),因此被广泛应用于基于视觉的分拣领域。在这篇论文中,我们采用了一种简单的数据增强策略--剔除(cutout),将其作为一种模拟缺陷的方法与基于对比学习的方法相结合,并证明这种方法能提高烧伤痕迹异常检测的准确性。此外,还评估了切割的不同变体。具体来说,由于缺乏真实数据,因此使用了合成图像数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cutout as augmentation in contrastive learning for detecting burn marks in plastic granules
Abstract. Plastic granules are a common delivery form for creating products in industries such as the plastic manufacturing, construction and automotive ones. In the corresponding sorting process of plastic granules, diverse defect types could appear. Burn marks, which potentially lead to weakened structural integrity of the plastic, are one of the most common types. Thus, plastic granules with burn marks should be filtered out during the sorting process. Artificial intelligence (AI)-based anomaly detection approaches are widely used in the field of visual-based sorting due to the higher accuracy and lower requirement of expert knowledge compared with classic rule-based algorithms (Chandola et al., 2009). In this contribution, a simple data augmentation strategy, cutout, is implemented as a way of simulating defects when combined with a contrastive learning-based methodology and is proven to improve the accuracy of the anomaly detection of burn marks. Different variants of cutout are also evaluated. Specifically, synthetic image data are used due to the lack of real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sensors and Sensor Systems
Journal of Sensors and Sensor Systems INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.30
自引率
10.00%
发文量
26
审稿时长
23 weeks
期刊介绍: Journal of Sensors and Sensor Systems (JSSS) is an international open-access journal dedicated to science, application, and advancement of sensors and sensors as part of measurement systems. The emphasis is on sensor principles and phenomena, measuring systems, sensor technologies, and applications. The goal of JSSS is to provide a platform for scientists and professionals in academia – as well as for developers, engineers, and users – to discuss new developments and advancements in sensors and sensor systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信