(µ + λ) 具有社会认知突变的进化策略

Q4 Engineering
Aleksandra Urbanczyk, Krzysztof Kucaba, Mateusz Wojtulewicz, Marek Kisiel-Dorohinicki, L. Rutkowski, Piotr Duda, Janusz Kacprzyk, Siang Yew Chong, Xin Yao, A. Byrski
{"title":"(µ + λ) 具有社会认知突变的进化策略","authors":"Aleksandra Urbanczyk, Krzysztof Kucaba, Mateusz Wojtulewicz, Marek Kisiel-Dorohinicki, L. Rutkowski, Piotr Duda, Janusz Kacprzyk, Siang Yew Chong, Xin Yao, A. Byrski","doi":"10.14313/jamris/1-2024/1","DOIUrl":null,"url":null,"abstract":"Socio-cognitive computing is a paradigm developed for the last several years in our research group. It consists of introducing mechanisms inspired by inter-individual learning and cognition into metaheuristics. Different versions of the paradigm have been successfully applied in hybridizing Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Genetic Algorithms, Differential Evolution, and Evolutionary Multi-agent System (EMAS) metaheuristics. In this paper, we have followed our previous experiences in order to propose a novel mutation based on sociocognitive mechanism and test it based on Evolution Strategy (ES). The newly constructed versions were applied to popular benchmarks and compared with their reference versions.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"79 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(µ + λ) Evolution Strategy with Socio-cognitive Mutation\",\"authors\":\"Aleksandra Urbanczyk, Krzysztof Kucaba, Mateusz Wojtulewicz, Marek Kisiel-Dorohinicki, L. Rutkowski, Piotr Duda, Janusz Kacprzyk, Siang Yew Chong, Xin Yao, A. Byrski\",\"doi\":\"10.14313/jamris/1-2024/1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Socio-cognitive computing is a paradigm developed for the last several years in our research group. It consists of introducing mechanisms inspired by inter-individual learning and cognition into metaheuristics. Different versions of the paradigm have been successfully applied in hybridizing Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Genetic Algorithms, Differential Evolution, and Evolutionary Multi-agent System (EMAS) metaheuristics. In this paper, we have followed our previous experiences in order to propose a novel mutation based on sociocognitive mechanism and test it based on Evolution Strategy (ES). The newly constructed versions were applied to popular benchmarks and compared with their reference versions.\",\"PeriodicalId\":37910,\"journal\":{\"name\":\"Journal of Automation, Mobile Robotics and Intelligent Systems\",\"volume\":\"79 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation, Mobile Robotics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14313/jamris/1-2024/1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/jamris/1-2024/1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

社会认知计算是我们研究小组在过去几年中开发的一种范式。它包括将受个体间学习和认知启发的机制引入元启发式计算。该范式的不同版本已成功应用于蚁群优化(ACO)、粒子群优化(PSO)、遗传算法、差分进化和进化多代理系统(EMAS)元启发式算法的混合。在本文中,我们根据以往的经验,提出了一种基于社会认知机制的新型突变,并在进化策略(ES)的基础上对其进行了测试。我们将新构建的版本应用于流行的基准,并与其参考版本进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(µ + λ) Evolution Strategy with Socio-cognitive Mutation
Socio-cognitive computing is a paradigm developed for the last several years in our research group. It consists of introducing mechanisms inspired by inter-individual learning and cognition into metaheuristics. Different versions of the paradigm have been successfully applied in hybridizing Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Genetic Algorithms, Differential Evolution, and Evolutionary Multi-agent System (EMAS) metaheuristics. In this paper, we have followed our previous experiences in order to propose a novel mutation based on sociocognitive mechanism and test it based on Evolution Strategy (ES). The newly constructed versions were applied to popular benchmarks and compared with their reference versions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Automation, Mobile Robotics and Intelligent Systems
Journal of Automation, Mobile Robotics and Intelligent Systems Engineering-Control and Systems Engineering
CiteScore
1.10
自引率
0.00%
发文量
25
期刊介绍: Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信