利用基于自动编码器的表征学习预测计算机网络中的异常情况

Shehram Sikander Khan, A. Mailewa
{"title":"利用基于自动编码器的表征学习预测计算机网络中的异常情况","authors":"Shehram Sikander Khan, A. Mailewa","doi":"10.11591/ijict.v13i1.pp9-26","DOIUrl":null,"url":null,"abstract":"Recent improvements in the internet of things (IoT), cloud services, and network data variety have increased the demand for complex anomaly detection algorithms in network intrusion detection systems (IDSs) capable of dealing with sophisticated network threats. Academics are interested in deep and machine learning (ML) breakthroughs because they have the potential to address complex challenges such as zero-day attacks. In comparison to firewalls, IDS are the initial line of network security. This study suggests merging supervised and unsupervised learning in identification systems IDS. Support vector machine (SVM) is an anomaly-based classification classifier. Deep autoencoder (DAE) lowers dimensionality. DAE are compared to principal component analysis (PCA) in this study, and hyper-parameters for F-1 micro score and balanced accuracy are specified. We have an uneven set of data classes. precision-recall curves, average precision (AP) score, train-test times, t-SNE, grid search, and L1/L2 regularization methods are used. KDDTrain+ and KDDTest+ datasets will be used in our model. For classification and performance, the DAE+SVM neural network technique is successful. Autoencoders outperformed linear PCA in terms of capturing valuable input attributes using t-SNE to embed high dimensional inputs on a two-dimensional plane. Our neural system outperforms solo SVM and PCA encoded SVM in multi-class scenarios.","PeriodicalId":245958,"journal":{"name":"International Journal of Informatics and Communication Technology (IJ-ICT)","volume":"21 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting anomalies in computer networks using autoencoder-based representation learning\",\"authors\":\"Shehram Sikander Khan, A. Mailewa\",\"doi\":\"10.11591/ijict.v13i1.pp9-26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent improvements in the internet of things (IoT), cloud services, and network data variety have increased the demand for complex anomaly detection algorithms in network intrusion detection systems (IDSs) capable of dealing with sophisticated network threats. Academics are interested in deep and machine learning (ML) breakthroughs because they have the potential to address complex challenges such as zero-day attacks. In comparison to firewalls, IDS are the initial line of network security. This study suggests merging supervised and unsupervised learning in identification systems IDS. Support vector machine (SVM) is an anomaly-based classification classifier. Deep autoencoder (DAE) lowers dimensionality. DAE are compared to principal component analysis (PCA) in this study, and hyper-parameters for F-1 micro score and balanced accuracy are specified. We have an uneven set of data classes. precision-recall curves, average precision (AP) score, train-test times, t-SNE, grid search, and L1/L2 regularization methods are used. KDDTrain+ and KDDTest+ datasets will be used in our model. For classification and performance, the DAE+SVM neural network technique is successful. Autoencoders outperformed linear PCA in terms of capturing valuable input attributes using t-SNE to embed high dimensional inputs on a two-dimensional plane. Our neural system outperforms solo SVM and PCA encoded SVM in multi-class scenarios.\",\"PeriodicalId\":245958,\"journal\":{\"name\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"volume\":\"21 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijict.v13i1.pp9-26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Informatics and Communication Technology (IJ-ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijict.v13i1.pp9-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,物联网(IoT)、云服务和网络数据种类的改进增加了对能够应对复杂网络威胁的网络入侵检测系统(IDS)中复杂异常检测算法的需求。学术界对深度学习和机器学习(ML)的突破很感兴趣,因为它们有可能应对零日攻击等复杂挑战。与防火墙相比,IDS 是网络安全的第一道防线。本研究建议在 IDS 识别系统中融合监督学习和非监督学习。支持向量机(SVM)是一种基于异常的分类器。深度自动编码器(DAE)可降低维度。在这项研究中,DAE 与主成分分析(PCA)进行了比较,并指定了 F-1 微分和平衡准确率的超参数。我们使用了精度-召回曲线、平均精度 (AP) 分数、训练-测试时间、t-SNE、网格搜索和 L1/L2 正则化方法。我们的模型将使用 KDDTrain+ 和 KDDTest+ 数据集。在分类和性能方面,DAE+SVM 神经网络技术是成功的。在利用 t-SNE 将高维输入嵌入二维平面以捕捉有价值的输入属性方面,自动编码器的表现优于线性 PCA。在多类场景中,我们的神经系统优于独奏 SVM 和 PCA 编码 SVM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting anomalies in computer networks using autoencoder-based representation learning
Recent improvements in the internet of things (IoT), cloud services, and network data variety have increased the demand for complex anomaly detection algorithms in network intrusion detection systems (IDSs) capable of dealing with sophisticated network threats. Academics are interested in deep and machine learning (ML) breakthroughs because they have the potential to address complex challenges such as zero-day attacks. In comparison to firewalls, IDS are the initial line of network security. This study suggests merging supervised and unsupervised learning in identification systems IDS. Support vector machine (SVM) is an anomaly-based classification classifier. Deep autoencoder (DAE) lowers dimensionality. DAE are compared to principal component analysis (PCA) in this study, and hyper-parameters for F-1 micro score and balanced accuracy are specified. We have an uneven set of data classes. precision-recall curves, average precision (AP) score, train-test times, t-SNE, grid search, and L1/L2 regularization methods are used. KDDTrain+ and KDDTest+ datasets will be used in our model. For classification and performance, the DAE+SVM neural network technique is successful. Autoencoders outperformed linear PCA in terms of capturing valuable input attributes using t-SNE to embed high dimensional inputs on a two-dimensional plane. Our neural system outperforms solo SVM and PCA encoded SVM in multi-class scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信