用有限 III 型描述管状表面的特征

Q3 Mathematics
Hassan Al-Zoubi, Hamza Alzaareer, Mohammad Al-Rawajbeh, Mohammad Al-kafaween
{"title":"用有限 III 型描述管状表面的特征","authors":"Hassan Al-Zoubi, Hamza Alzaareer, Mohammad Al-Rawajbeh, Mohammad Al-kafaween","doi":"10.37394/23203.2024.19.3","DOIUrl":null,"url":null,"abstract":"In this paper, we first define relations regarding the first and the second Laplace operators corresponding to the third fundamental form III of a surface in the Euclidean space E 3 . Then, we will characterize the tubular surfaces in terms of their coordinate finite type.","PeriodicalId":39422,"journal":{"name":"WSEAS Transactions on Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Tubular Surfaces in Terms of Finite III-type\",\"authors\":\"Hassan Al-Zoubi, Hamza Alzaareer, Mohammad Al-Rawajbeh, Mohammad Al-kafaween\",\"doi\":\"10.37394/23203.2024.19.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first define relations regarding the first and the second Laplace operators corresponding to the third fundamental form III of a surface in the Euclidean space E 3 . Then, we will characterize the tubular surfaces in terms of their coordinate finite type.\",\"PeriodicalId\":39422,\"journal\":{\"name\":\"WSEAS Transactions on Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23203.2024.19.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23203.2024.19.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先定义了与欧几里得空间 E 3 中曲面的第三基本形式 III 相对应的第一和第二拉普拉斯算子的关系。然后,我们将根据其坐标有限类型来描述管状曲面的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Tubular Surfaces in Terms of Finite III-type
In this paper, we first define relations regarding the first and the second Laplace operators corresponding to the third fundamental form III of a surface in the Euclidean space E 3 . Then, we will characterize the tubular surfaces in terms of their coordinate finite type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Systems and Control
WSEAS Transactions on Systems and Control Mathematics-Control and Optimization
CiteScore
1.80
自引率
0.00%
发文量
49
期刊介绍: WSEAS Transactions on Systems and Control publishes original research papers relating to systems theory and automatic control. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with systems theory, dynamical systems, linear and non-linear control, intelligent control, robotics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信