用改进的 Hessian 近似法进行神经网络表观不确定性估计的稀疏子网络推理

Yinsong Chen, Samson Yu, J. Eshraghian, Chee Peng Lim
{"title":"用改进的 Hessian 近似法进行神经网络表观不确定性估计的稀疏子网络推理","authors":"Yinsong Chen, Samson Yu, J. Eshraghian, Chee Peng Lim","doi":"10.1063/5.0193951","DOIUrl":null,"url":null,"abstract":"Despite significant advances in deep neural networks across diverse domains, challenges persist in safety-critical contexts, including domain shift sensitivity and unreliable uncertainty estimation. To address these issues, this study investigates Bayesian learning for uncertainty handling in modern neural networks. However, the high-dimensional, non-convex nature of the posterior distribution poses practical limitations for epistemic uncertainty estimation. The Laplace approximation, as a cost-efficient Bayesian method, offers a practical solution by approximating the posterior as a multivariate normal distribution but faces computational bottlenecks in precise covariance matrix computation and storage. This research employs subnetwork inference, utilizing only a subset of the parameter space for Bayesian inference. In addition, a Kronecker-factored and low-rank representation is explored to reduce space complexity and computational costs. Several corrections are introduced to converge the approximated curvature to the exact Hessian matrix. Numerical results demonstrate the effectiveness and competitiveness of this method, whereas qualitative experiments highlight the impact of Hessian approximation granularity and parameter space utilization in Bayesian inference on mitigating overconfidence in predictions and obtaining high-quality uncertainty estimates.","PeriodicalId":502250,"journal":{"name":"APL Machine Learning","volume":"35 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse subnetwork inference for neural network epistemic uncertainty estimation with improved Hessian approximation\",\"authors\":\"Yinsong Chen, Samson Yu, J. Eshraghian, Chee Peng Lim\",\"doi\":\"10.1063/5.0193951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite significant advances in deep neural networks across diverse domains, challenges persist in safety-critical contexts, including domain shift sensitivity and unreliable uncertainty estimation. To address these issues, this study investigates Bayesian learning for uncertainty handling in modern neural networks. However, the high-dimensional, non-convex nature of the posterior distribution poses practical limitations for epistemic uncertainty estimation. The Laplace approximation, as a cost-efficient Bayesian method, offers a practical solution by approximating the posterior as a multivariate normal distribution but faces computational bottlenecks in precise covariance matrix computation and storage. This research employs subnetwork inference, utilizing only a subset of the parameter space for Bayesian inference. In addition, a Kronecker-factored and low-rank representation is explored to reduce space complexity and computational costs. Several corrections are introduced to converge the approximated curvature to the exact Hessian matrix. Numerical results demonstrate the effectiveness and competitiveness of this method, whereas qualitative experiments highlight the impact of Hessian approximation granularity and parameter space utilization in Bayesian inference on mitigating overconfidence in predictions and obtaining high-quality uncertainty estimates.\",\"PeriodicalId\":502250,\"journal\":{\"name\":\"APL Machine Learning\",\"volume\":\"35 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0193951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0193951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管深度神经网络在不同领域取得了重大进展,但在安全关键型环境中仍然存在挑战,包括领域偏移敏感性和不可靠的不确定性估计。为了解决这些问题,本研究对现代神经网络中的不确定性处理进行了贝叶斯学习研究。然而,后验分布的高维、非凸性质给认识论不确定性估计带来了实际限制。拉普拉斯近似作为一种具有成本效益的贝叶斯方法,通过将后验近似为多元正态分布提供了一种实用的解决方案,但在精确协方差矩阵计算和存储方面面临计算瓶颈。这项研究采用了子网络推断法,只利用参数空间的一个子集进行贝叶斯推断。此外,还探索了克朗克因子和低秩表示法,以降低空间复杂性和计算成本。为了使近似曲率收敛到精确的 Hessian 矩阵,还引入了几种修正方法。数值结果证明了这一方法的有效性和竞争力,而定性实验则强调了贝叶斯推理中的黑森近似粒度和参数空间利用对减轻预测过度自信和获得高质量不确定性估计的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse subnetwork inference for neural network epistemic uncertainty estimation with improved Hessian approximation
Despite significant advances in deep neural networks across diverse domains, challenges persist in safety-critical contexts, including domain shift sensitivity and unreliable uncertainty estimation. To address these issues, this study investigates Bayesian learning for uncertainty handling in modern neural networks. However, the high-dimensional, non-convex nature of the posterior distribution poses practical limitations for epistemic uncertainty estimation. The Laplace approximation, as a cost-efficient Bayesian method, offers a practical solution by approximating the posterior as a multivariate normal distribution but faces computational bottlenecks in precise covariance matrix computation and storage. This research employs subnetwork inference, utilizing only a subset of the parameter space for Bayesian inference. In addition, a Kronecker-factored and low-rank representation is explored to reduce space complexity and computational costs. Several corrections are introduced to converge the approximated curvature to the exact Hessian matrix. Numerical results demonstrate the effectiveness and competitiveness of this method, whereas qualitative experiments highlight the impact of Hessian approximation granularity and parameter space utilization in Bayesian inference on mitigating overconfidence in predictions and obtaining high-quality uncertainty estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信