利用机器学习预测道路事故

Dr. M. Hemalatha, S. Dhuwaraganath
{"title":"利用机器学习预测道路事故","authors":"Dr. M. Hemalatha, S. Dhuwaraganath","doi":"10.32628/ijsrst52411284","DOIUrl":null,"url":null,"abstract":"Road accidents are a significant cause of fatalities and injuries worldwide. Predicting road accidents is crucial for implementing  preventive  measures  and  saving  lives.  This  paper  presents a deep learning-based road accident prediction  system  utilizing  various  factors  such  as speed, traffic condition, weather, and more. By leveraging publicly available datasets and external data sources, the model aims to accurately predict road accidents, ultimately contributing to enhancing road safety.","PeriodicalId":14387,"journal":{"name":"International Journal of Scientific Research in Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Road Accident Prediction Using Machine Learning\",\"authors\":\"Dr. M. Hemalatha, S. Dhuwaraganath\",\"doi\":\"10.32628/ijsrst52411284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Road accidents are a significant cause of fatalities and injuries worldwide. Predicting road accidents is crucial for implementing  preventive  measures  and  saving  lives.  This  paper  presents a deep learning-based road accident prediction  system  utilizing  various  factors  such  as speed, traffic condition, weather, and more. By leveraging publicly available datasets and external data sources, the model aims to accurately predict road accidents, ultimately contributing to enhancing road safety.\",\"PeriodicalId\":14387,\"journal\":{\"name\":\"International Journal of Scientific Research in Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Research in Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32628/ijsrst52411284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/ijsrst52411284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

交通事故是造成全球人员伤亡的一个重要原因。预测道路事故对于实施预防措施和挽救生命至关重要。 本文介绍了一种基于深度学习的道路事故预测系统,该系统利用了速度、交通状况、天气等各种因素。通过利用公开数据集和外部数据源,该模型旨在准确预测道路事故,最终为加强道路安全做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Road Accident Prediction Using Machine Learning
Road accidents are a significant cause of fatalities and injuries worldwide. Predicting road accidents is crucial for implementing  preventive  measures  and  saving  lives.  This  paper  presents a deep learning-based road accident prediction  system  utilizing  various  factors  such  as speed, traffic condition, weather, and more. By leveraging publicly available datasets and external data sources, the model aims to accurately predict road accidents, ultimately contributing to enhancing road safety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信