利用有限元模拟分析温度对合金钢锻造模拟的影响

Dame Alemayehu Efa, H. Lemu, E. M. Gutema, Mahesh Gopal
{"title":"利用有限元模拟分析温度对合金钢锻造模拟的影响","authors":"Dame Alemayehu Efa, H. Lemu, E. M. Gutema, Mahesh Gopal","doi":"10.4028/p-a6inh6","DOIUrl":null,"url":null,"abstract":"The goal of this research is to examine the influence of temperature affects the forging of a rectangular billet of AISI 4120 alloy steel using the 3D Deform version 11 software. The simulation was performed with 0.3 coefficient of friction on a metal forming (lubricated) process and the part is intended for application in aerospace and oil and gas industries. Three modules of deform software were defined to execute the simulation: pre-processing, simulation, and post-processing. The pre-processing in forging employed standard data— material selection, billet drawing, top and bottom dies design, meshing and simulation control. After 120 steps, the post-process estimation of deformation temperature, effective strain and stress, total velocity, and total displacement were obtained on the billet of material at temperatures of 800o C, 1000o C, and 1200° C. The results show that when forging temperatures climb, effective strain and stress decrease, total displacement and velocity decrease, and the final temperature increases.","PeriodicalId":17714,"journal":{"name":"Key Engineering Materials","volume":"6 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing the Effect of Temperature on Alloy Steel Forging Simulation Using Finite Element Simulation\",\"authors\":\"Dame Alemayehu Efa, H. Lemu, E. M. Gutema, Mahesh Gopal\",\"doi\":\"10.4028/p-a6inh6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this research is to examine the influence of temperature affects the forging of a rectangular billet of AISI 4120 alloy steel using the 3D Deform version 11 software. The simulation was performed with 0.3 coefficient of friction on a metal forming (lubricated) process and the part is intended for application in aerospace and oil and gas industries. Three modules of deform software were defined to execute the simulation: pre-processing, simulation, and post-processing. The pre-processing in forging employed standard data— material selection, billet drawing, top and bottom dies design, meshing and simulation control. After 120 steps, the post-process estimation of deformation temperature, effective strain and stress, total velocity, and total displacement were obtained on the billet of material at temperatures of 800o C, 1000o C, and 1200° C. The results show that when forging temperatures climb, effective strain and stress decrease, total displacement and velocity decrease, and the final temperature increases.\",\"PeriodicalId\":17714,\"journal\":{\"name\":\"Key Engineering Materials\",\"volume\":\"6 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Key Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-a6inh6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Key Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-a6inh6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是使用 3D Deform 11 版软件研究温度对 AISI 4120 合金钢矩形坯料锻造的影响。模拟是在摩擦系数为 0.3 的金属成型(润滑)过程中进行的,该零件旨在应用于航空航天和石油天然气行业。为执行模拟定义了 deform 软件的三个模块:预处理、模拟和后处理。锻造前处理采用了标准数据--材料选择、坯料绘制、顶模和底模设计、网格划分和仿真控制。经过 120 个步骤后,对温度分别为 800 摄氏度、1000 摄氏度和 1200 摄氏度的坯料进行了变形温度、有效应变和应力、总速度和总位移的后处理估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the Effect of Temperature on Alloy Steel Forging Simulation Using Finite Element Simulation
The goal of this research is to examine the influence of temperature affects the forging of a rectangular billet of AISI 4120 alloy steel using the 3D Deform version 11 software. The simulation was performed with 0.3 coefficient of friction on a metal forming (lubricated) process and the part is intended for application in aerospace and oil and gas industries. Three modules of deform software were defined to execute the simulation: pre-processing, simulation, and post-processing. The pre-processing in forging employed standard data— material selection, billet drawing, top and bottom dies design, meshing and simulation control. After 120 steps, the post-process estimation of deformation temperature, effective strain and stress, total velocity, and total displacement were obtained on the billet of material at temperatures of 800o C, 1000o C, and 1200° C. The results show that when forging temperatures climb, effective strain and stress decrease, total displacement and velocity decrease, and the final temperature increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信