描述广义魏格登超曲面的 n 维广义赫尔姆霍兹方程的一类解

A. Corro, Carlos Riveros, José Carretero
{"title":"描述广义魏格登超曲面的 n 维广义赫尔姆霍兹方程的一类解","authors":"A. Corro, Carlos Riveros, José Carretero","doi":"10.55630/serdica.2024.50.1-34","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the \\(n\\)-dimensional generalized Helmholtz equation and present explicit solutions to this equation in terms of biharmonic functions, in particular, we get solutions that depend on holomorphic functions. Also, we present explicit radial solutions for this equation and we provide explicit solutions to the \\(n\\)-dimensional Helmholtz equation. In addition, as an application we introduced two classes of generalized Weingarten hypersurfaces, namely, the RSHGW-hypersurfaces and the RSGW-hypersurfaces, associated with solutions of the \\(n\\)-dimensional generalized Helmholtz equation and classify the RSHGW-hypersurfaces of rotation. For \\(n=2\\), we obtain a Weierstrass type representation for these surfaces which depend of three holomorphic functions and we classify the RSHGW-surfaces and the RSGW-surfaces of rotation.","PeriodicalId":509503,"journal":{"name":"Serdica Mathematical Journal","volume":"19 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A class of solutions of the n-dimensional generalized Helmholtz equation which describes generalized Weingarten hypersurfaces\",\"authors\":\"A. Corro, Carlos Riveros, José Carretero\",\"doi\":\"10.55630/serdica.2024.50.1-34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the \\\\(n\\\\)-dimensional generalized Helmholtz equation and present explicit solutions to this equation in terms of biharmonic functions, in particular, we get solutions that depend on holomorphic functions. Also, we present explicit radial solutions for this equation and we provide explicit solutions to the \\\\(n\\\\)-dimensional Helmholtz equation. In addition, as an application we introduced two classes of generalized Weingarten hypersurfaces, namely, the RSHGW-hypersurfaces and the RSGW-hypersurfaces, associated with solutions of the \\\\(n\\\\)-dimensional generalized Helmholtz equation and classify the RSHGW-hypersurfaces of rotation. For \\\\(n=2\\\\), we obtain a Weierstrass type representation for these surfaces which depend of three holomorphic functions and we classify the RSHGW-surfaces and the RSGW-surfaces of rotation.\",\"PeriodicalId\":509503,\"journal\":{\"name\":\"Serdica Mathematical Journal\",\"volume\":\"19 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Serdica Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55630/serdica.2024.50.1-34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serdica Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55630/serdica.2024.50.1-34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们介绍了 \(n\)-dimensional 广义亥姆霍兹方程,并给出了该方程在双谐函数方面的显式解,特别是,我们得到了依赖于全态函数的解。同时,我们还给出了该方程的显式径向解,并给出了 \(n\)-dimensional Helmholtz方程的显式解。此外,作为应用,我们引入了与(n)维广义亥姆霍兹方程的解相关的两类广义魏格登超曲面,即 RSHGW 超曲面和 RSGW 超曲面,并对(n)维旋转 RSHGW 超曲面进行了分类。对于 \(n=2\) ,我们得到了这些曲面的魏尔斯特拉斯(Weierstrass)类型表示,它们取决于三个全态函数,我们对旋转的 RSHGW 曲面和 RSGW 曲面进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of solutions of the n-dimensional generalized Helmholtz equation which describes generalized Weingarten hypersurfaces
In this paper, we introduce the \(n\)-dimensional generalized Helmholtz equation and present explicit solutions to this equation in terms of biharmonic functions, in particular, we get solutions that depend on holomorphic functions. Also, we present explicit radial solutions for this equation and we provide explicit solutions to the \(n\)-dimensional Helmholtz equation. In addition, as an application we introduced two classes of generalized Weingarten hypersurfaces, namely, the RSHGW-hypersurfaces and the RSGW-hypersurfaces, associated with solutions of the \(n\)-dimensional generalized Helmholtz equation and classify the RSHGW-hypersurfaces of rotation. For \(n=2\), we obtain a Weierstrass type representation for these surfaces which depend of three holomorphic functions and we classify the RSHGW-surfaces and the RSGW-surfaces of rotation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信