相对论混沌散射:揭示被困轨迹的缩放定律

Fernando Blesa, J. D. Bernal, J. Seoane, Miguel A. F. M. Sanjuán
{"title":"相对论混沌散射:揭示被困轨迹的缩放定律","authors":"Fernando Blesa, J. D. Bernal, J. Seoane, Miguel A. F. M. Sanjuán","doi":"10.1103/physreve.109.044204","DOIUrl":null,"url":null,"abstract":"In this paper, we study different types of phase space structures which appear in the context of relativistic chaotic scattering. By using the relativistic version of the H\\'{e}non-Heiles Hamiltonian, we numerically study the topology of different kind of exit basins and compare it with the case of low velocities in which the Newtonian version of the system is valid. Specifically, we numerically study the escapes in the phase space, in the energy plane and also in the $\\beta$ plane which richly characterize the dynamics of the system. In all cases, fractal structures are present, and the escaping dynamics is characterized. Besides, in every case a scaling law is numerically obtained in which the percentage of the trapped trajectories as a function of the relativistic parameter $\\beta$ and the energy is obtained. Our work could be useful in the context of charged particles which eventually can be trapped in the magnetosphere, where the analysis of these structures can be relevant.","PeriodicalId":507118,"journal":{"name":"Physical Review E","volume":"50 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relativistic chaotic scattering: Unveiling scaling laws for trapped trajectories\",\"authors\":\"Fernando Blesa, J. D. Bernal, J. Seoane, Miguel A. F. M. Sanjuán\",\"doi\":\"10.1103/physreve.109.044204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study different types of phase space structures which appear in the context of relativistic chaotic scattering. By using the relativistic version of the H\\\\'{e}non-Heiles Hamiltonian, we numerically study the topology of different kind of exit basins and compare it with the case of low velocities in which the Newtonian version of the system is valid. Specifically, we numerically study the escapes in the phase space, in the energy plane and also in the $\\\\beta$ plane which richly characterize the dynamics of the system. In all cases, fractal structures are present, and the escaping dynamics is characterized. Besides, in every case a scaling law is numerically obtained in which the percentage of the trapped trajectories as a function of the relativistic parameter $\\\\beta$ and the energy is obtained. Our work could be useful in the context of charged particles which eventually can be trapped in the magnetosphere, where the analysis of these structures can be relevant.\",\"PeriodicalId\":507118,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"50 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.109.044204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.109.044204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了相对论混沌散射背景下出现的不同类型的相空间结构。通过使用相对论版本的非海尔斯哈密顿,我们用数值方法研究了不同类型出口盆地的拓扑结构,并与牛顿版本系统有效的低速情况进行了比较。具体来说,我们数值研究了相空间、能量平面以及$\beta$平面上的逃逸,它们丰富地描述了系统的动力学特征。在所有情况下,分形结构都是存在的,逸散动力学也是有特征的。此外,在每种情况下,我们都从数值上得到了一个缩放定律,在这个定律中,被困轨迹的百分比是相对论参数 $\beta$ 和能量的函数。我们的工作可能对最终可能被困在磁层中的带电粒子有用,对这些结构的分析可能与此相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relativistic chaotic scattering: Unveiling scaling laws for trapped trajectories
In this paper, we study different types of phase space structures which appear in the context of relativistic chaotic scattering. By using the relativistic version of the H\'{e}non-Heiles Hamiltonian, we numerically study the topology of different kind of exit basins and compare it with the case of low velocities in which the Newtonian version of the system is valid. Specifically, we numerically study the escapes in the phase space, in the energy plane and also in the $\beta$ plane which richly characterize the dynamics of the system. In all cases, fractal structures are present, and the escaping dynamics is characterized. Besides, in every case a scaling law is numerically obtained in which the percentage of the trapped trajectories as a function of the relativistic parameter $\beta$ and the energy is obtained. Our work could be useful in the context of charged particles which eventually can be trapped in the magnetosphere, where the analysis of these structures can be relevant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信