最大阶数单环图的最小原子键和连通性指数

IF 1 Q1 MATHEMATICS
Palaniyappan Nithya, S. Elumalai, Selvaraj Balachandran
{"title":"最大阶数单环图的最小原子键和连通性指数","authors":"Palaniyappan Nithya, S. Elumalai, Selvaraj Balachandran","doi":"10.47443/dml.2023.191","DOIUrl":null,"url":null,"abstract":"Let G be a graph with edge set E ( G ) . Denote by d u the degree of a vertex u in G . The atom-bond sum-connectivity (ABS) index of G is defined as ABS ( G ) = (cid:80) xy ∈ E ( G ) (cid:112) ( d x + d y − 2) / ( d x + d y ) . In this article, we determine the minimum possible value of the ABS index of unicyclic graphs of order n and maximum degree ∆ such that 3 ≤ ∆ ≤ n − 2 . All the graphs that attain the obtained minimum value are also characterized.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum atom-bond sum-connectivity index of unicyclic graphs with maximum degree\",\"authors\":\"Palaniyappan Nithya, S. Elumalai, Selvaraj Balachandran\",\"doi\":\"10.47443/dml.2023.191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a graph with edge set E ( G ) . Denote by d u the degree of a vertex u in G . The atom-bond sum-connectivity (ABS) index of G is defined as ABS ( G ) = (cid:80) xy ∈ E ( G ) (cid:112) ( d x + d y − 2) / ( d x + d y ) . In this article, we determine the minimum possible value of the ABS index of unicyclic graphs of order n and maximum degree ∆ such that 3 ≤ ∆ ≤ n − 2 . All the graphs that attain the obtained minimum value are also characterized.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2023.191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 G 是边集 E ( G ) 的图。用 d u 表示 G 中顶点 u 的度。G 的原子-键和-连通性(ABS)指数定义为 ABS ( G ) = (cid:80) xy∈ E ( G ) (cid:112) ( d x + d y - 2) / ( d x + d y ) 。在本文中,我们确定了阶数为 n、最大度数为 ∆ 的单环图的 ABS 指数的最小可能值,使得 3 ≤ ∆ ≤ n - 2 。所有达到所求最小值的图形也都有其特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum atom-bond sum-connectivity index of unicyclic graphs with maximum degree
Let G be a graph with edge set E ( G ) . Denote by d u the degree of a vertex u in G . The atom-bond sum-connectivity (ABS) index of G is defined as ABS ( G ) = (cid:80) xy ∈ E ( G ) (cid:112) ( d x + d y − 2) / ( d x + d y ) . In this article, we determine the minimum possible value of the ABS index of unicyclic graphs of order n and maximum degree ∆ such that 3 ≤ ∆ ≤ n − 2 . All the graphs that attain the obtained minimum value are also characterized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信