具有不确定彩色噪声方差的分数阶系统的鲁棒卡尔曼滤波器

Guanran Wang, Xiaojun Sun
{"title":"具有不确定彩色噪声方差的分数阶系统的鲁棒卡尔曼滤波器","authors":"Guanran Wang, Xiaojun Sun","doi":"10.1177/00202940241241917","DOIUrl":null,"url":null,"abstract":"For fractional order systems with colored process noise, the discretization fractional order system model is used to construct the augmented vector defined by the state vector and colored process noise vector. Based on the augmented equation of fractional order systems, the robust local Kalman filtering algorithm for fractional order systems with colored process noise is derived. The matrix weighted fusion, weighted measurement fusion and centralized fusion methods were used to fuse and estimate the state of multi-sensor fractional order system. Simulation results show the effectiveness of the proposed algorithm.","PeriodicalId":510299,"journal":{"name":"Measurement and Control","volume":"17 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Kalman filter for fractional order systems with uncertain colored noise variance\",\"authors\":\"Guanran Wang, Xiaojun Sun\",\"doi\":\"10.1177/00202940241241917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For fractional order systems with colored process noise, the discretization fractional order system model is used to construct the augmented vector defined by the state vector and colored process noise vector. Based on the augmented equation of fractional order systems, the robust local Kalman filtering algorithm for fractional order systems with colored process noise is derived. The matrix weighted fusion, weighted measurement fusion and centralized fusion methods were used to fuse and estimate the state of multi-sensor fractional order system. Simulation results show the effectiveness of the proposed algorithm.\",\"PeriodicalId\":510299,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940241241917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940241241917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于有彩色过程噪声的分数阶系统,离散化分数阶系统模型用于构建由状态向量和彩色过程噪声向量定义的增强向量。基于分数阶系统的增强方程,推导出了具有彩色过程噪声的分数阶系统的鲁棒局部卡尔曼滤波算法。采用矩阵加权融合、加权测量融合和集中融合方法来融合和估计多传感器分数阶系统的状态。仿真结果表明了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Kalman filter for fractional order systems with uncertain colored noise variance
For fractional order systems with colored process noise, the discretization fractional order system model is used to construct the augmented vector defined by the state vector and colored process noise vector. Based on the augmented equation of fractional order systems, the robust local Kalman filtering algorithm for fractional order systems with colored process noise is derived. The matrix weighted fusion, weighted measurement fusion and centralized fusion methods were used to fuse and estimate the state of multi-sensor fractional order system. Simulation results show the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信