基于制备型高效液相色谱、UPLC-Q-TOF/MS 和电子舌分离鉴定人参中的苦味化合物

Yang Chen, Ziwei Liao, Zhe Wang, Wanyin Shi, Jian Xu
{"title":"基于制备型高效液相色谱、UPLC-Q-TOF/MS 和电子舌分离鉴定人参中的苦味化合物","authors":"Yang Chen, Ziwei Liao, Zhe Wang, Wanyin Shi, Jian Xu","doi":"10.3390/separations11040114","DOIUrl":null,"url":null,"abstract":"As a traditional Chinese medicinal herb, ginseng (Panax ginseng C. A. Mey.) is commonly used to treat common diseases, for example, esophageal cancer and myasthenia gravis. Furthermore, ginseng is also processed into a functional food additive that is utilized to improve the freshness of chicken soup and make health wine. Unfortunately, ginseng (Panax ginseng C. A. Mey.) has already shown a noticeable bitterness during its application process. In this research, the bitter substances in ginseng (Panax ginseng C. A. Mey.) after two common preparation processes (water extraction and ethanol extraction) were separated, purified and identified by preparative high performance liquid chromatography (prep-HPLC), high performance liquid chromatography with diode array detector (HPLC-DAD), ultra-performance liquid chromatography coupled with high-resolution quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) and an electronic tongue. The results indicated that compared with the other four bitter compounds, the ginsenoside Rb1 had the highest bitterness value, followed by 20(S)-ginsenoside Rg2, ginsenoside Rg1, ginsenoside Rf and ginsenoside Rb3. Upon the evaluation of results to reduce the bitterness of ginseng extract, we found that the composite embedding system of chitosan adsorption in the ginseng carrageenan gel microsphere (K/MC/MCG) could effectively reduce the bitterness.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"54 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation and Identification of Bitter Compounds in Ginseng (Panax ginseng C. A. Mey.) Based on Preparative High Performance Liquid Chromatography, UPLC-Q-TOF/MS and Electronic Tongue\",\"authors\":\"Yang Chen, Ziwei Liao, Zhe Wang, Wanyin Shi, Jian Xu\",\"doi\":\"10.3390/separations11040114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a traditional Chinese medicinal herb, ginseng (Panax ginseng C. A. Mey.) is commonly used to treat common diseases, for example, esophageal cancer and myasthenia gravis. Furthermore, ginseng is also processed into a functional food additive that is utilized to improve the freshness of chicken soup and make health wine. Unfortunately, ginseng (Panax ginseng C. A. Mey.) has already shown a noticeable bitterness during its application process. In this research, the bitter substances in ginseng (Panax ginseng C. A. Mey.) after two common preparation processes (water extraction and ethanol extraction) were separated, purified and identified by preparative high performance liquid chromatography (prep-HPLC), high performance liquid chromatography with diode array detector (HPLC-DAD), ultra-performance liquid chromatography coupled with high-resolution quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) and an electronic tongue. The results indicated that compared with the other four bitter compounds, the ginsenoside Rb1 had the highest bitterness value, followed by 20(S)-ginsenoside Rg2, ginsenoside Rg1, ginsenoside Rf and ginsenoside Rb3. Upon the evaluation of results to reduce the bitterness of ginseng extract, we found that the composite embedding system of chitosan adsorption in the ginseng carrageenan gel microsphere (K/MC/MCG) could effectively reduce the bitterness.\",\"PeriodicalId\":510456,\"journal\":{\"name\":\"Separations\",\"volume\":\"54 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/separations11040114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/separations11040114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为一种传统中药材,人参(Panax ginseng C. A. Mey.)常用于治疗常见疾病,如食道癌和重症肌无力。此外,人参还被加工成功能性食品添加剂,用于提高鸡汤的鲜味和酿造保健酒。遗憾的是,人参(Panax ginseng C. A. Mey.)本研究采用制备型高效液相色谱(prep-HPLC)、高效液相色谱-二极管阵列检测器(HPLC-DAD)、超高效液相色谱-高分辨四极杆飞行时间质谱(UPLC-Q-TOF/MS)和电子舌对人参中两种常见制备工艺(水提和乙醇提取)后的苦味物质进行了分离、纯化和鉴定。结果表明,与其他四种苦味化合物相比,人参皂苷 Rb1 的苦味值最高,其次是 20(S)-人参皂苷 Rg2、人参皂苷 Rg1、人参皂苷 Rf 和人参皂苷 Rb3。在对降低人参提取物苦味的结果进行评估后,我们发现壳聚糖吸附人参卡拉胶凝胶微球(K/MC/MCG)的复合包埋体系能有效降低苦味。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isolation and Identification of Bitter Compounds in Ginseng (Panax ginseng C. A. Mey.) Based on Preparative High Performance Liquid Chromatography, UPLC-Q-TOF/MS and Electronic Tongue
As a traditional Chinese medicinal herb, ginseng (Panax ginseng C. A. Mey.) is commonly used to treat common diseases, for example, esophageal cancer and myasthenia gravis. Furthermore, ginseng is also processed into a functional food additive that is utilized to improve the freshness of chicken soup and make health wine. Unfortunately, ginseng (Panax ginseng C. A. Mey.) has already shown a noticeable bitterness during its application process. In this research, the bitter substances in ginseng (Panax ginseng C. A. Mey.) after two common preparation processes (water extraction and ethanol extraction) were separated, purified and identified by preparative high performance liquid chromatography (prep-HPLC), high performance liquid chromatography with diode array detector (HPLC-DAD), ultra-performance liquid chromatography coupled with high-resolution quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) and an electronic tongue. The results indicated that compared with the other four bitter compounds, the ginsenoside Rb1 had the highest bitterness value, followed by 20(S)-ginsenoside Rg2, ginsenoside Rg1, ginsenoside Rf and ginsenoside Rb3. Upon the evaluation of results to reduce the bitterness of ginseng extract, we found that the composite embedding system of chitosan adsorption in the ginseng carrageenan gel microsphere (K/MC/MCG) could effectively reduce the bitterness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信