复平面内解析函数的 $K^{th}$ 阶微分服从结果

A. Wanas, M. M. Soren
{"title":"复平面内解析函数的 $K^{th}$ 阶微分服从结果","authors":"A. Wanas, M. M. Soren","doi":"10.34198/ejms.14424.595603","DOIUrl":null,"url":null,"abstract":"In recent years, there have been many interesting usages for differential subordinations of analytic functions in Geometric Function Theory of Complex Analysis. The concept of the first and second-order differential subordination have been pioneered by Miller and Mocanu. In 2011, the third-order differential subordination were defined to give a new generalization to the concept of differential subordination. While the fourth-order differential subordination has been introduced in 2020. In the present article, we introduce new concept that is the Kth-order differential subordination of analytic functions in the open unit disk U.","PeriodicalId":482741,"journal":{"name":"Earthline Journal of Mathematical Sciences","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$K^{th}$-order Differential Subordination Results of Analytic Functions in the Complex Plane\",\"authors\":\"A. Wanas, M. M. Soren\",\"doi\":\"10.34198/ejms.14424.595603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, there have been many interesting usages for differential subordinations of analytic functions in Geometric Function Theory of Complex Analysis. The concept of the first and second-order differential subordination have been pioneered by Miller and Mocanu. In 2011, the third-order differential subordination were defined to give a new generalization to the concept of differential subordination. While the fourth-order differential subordination has been introduced in 2020. In the present article, we introduce new concept that is the Kth-order differential subordination of analytic functions in the open unit disk U.\",\"PeriodicalId\":482741,\"journal\":{\"name\":\"Earthline Journal of Mathematical Sciences\",\"volume\":\"2 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthline Journal of Mathematical Sciences\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.34198/ejms.14424.595603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthline Journal of Mathematical Sciences","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.34198/ejms.14424.595603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,解析函数的微分从属性在复分析几何函数论中有许多有趣的应用。米勒和莫卡努率先提出了一阶微分从属性和二阶微分从属性的概念。2011 年,定义了三阶微分从属关系,对微分从属关系的概念进行了新的概括。而四阶微分从属关系则是在 2020 年提出的。在本文中,我们引入了一个新概念,即开放单位盘 U 中解析函数的 Kth 阶微分从属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$K^{th}$-order Differential Subordination Results of Analytic Functions in the Complex Plane
In recent years, there have been many interesting usages for differential subordinations of analytic functions in Geometric Function Theory of Complex Analysis. The concept of the first and second-order differential subordination have been pioneered by Miller and Mocanu. In 2011, the third-order differential subordination were defined to give a new generalization to the concept of differential subordination. While the fourth-order differential subordination has been introduced in 2020. In the present article, we introduce new concept that is the Kth-order differential subordination of analytic functions in the open unit disk U.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信