Lennin Mallma Ramirez, Nelson Maculan, Adilson Elias Xavier, Vinicius Layter Xavier
{"title":"凸编程中的错位双曲增强拉格朗日算法","authors":"Lennin Mallma Ramirez, Nelson Maculan, Adilson Elias Xavier, Vinicius Layter Xavier","doi":"10.11121/ijocta.1402","DOIUrl":null,"url":null,"abstract":"The dislocation hyperbolic augmented Lagrangian algorithm (DHALA) is a new approach to the hyperbolic augmented Lagrangian algorithm (HALA). DHALA is designed to solve convex nonlinear programming problems. We guarantee that the sequence generated by DHALA converges towards a Karush-Kuhn-Tucker point. We are going to observe that DHALA has a slight computational advantage in solving the problems over HALA. Finally, we will computationally illustrate our theoretical results.","PeriodicalId":505378,"journal":{"name":"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dislocation hyperbolic augmented Lagrangian algorithm in convex programming\",\"authors\":\"Lennin Mallma Ramirez, Nelson Maculan, Adilson Elias Xavier, Vinicius Layter Xavier\",\"doi\":\"10.11121/ijocta.1402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dislocation hyperbolic augmented Lagrangian algorithm (DHALA) is a new approach to the hyperbolic augmented Lagrangian algorithm (HALA). DHALA is designed to solve convex nonlinear programming problems. We guarantee that the sequence generated by DHALA converges towards a Karush-Kuhn-Tucker point. We are going to observe that DHALA has a slight computational advantage in solving the problems over HALA. Finally, we will computationally illustrate our theoretical results.\",\"PeriodicalId\":505378,\"journal\":{\"name\":\"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.1402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.1402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
错位双曲增强拉格朗日算法(DHALA)是双曲增强拉格朗日算法(HALA)的一种新方法。DHALA 专为解决凸非线性编程问题而设计。我们保证 DHALA 生成的序列收敛于 Karush-Kuhn-Tucker 点。我们将观察到,与 HALA 相比,DHALA 在求解问题时略有计算优势。最后,我们将通过计算来说明我们的理论结果。
Dislocation hyperbolic augmented Lagrangian algorithm in convex programming
The dislocation hyperbolic augmented Lagrangian algorithm (DHALA) is a new approach to the hyperbolic augmented Lagrangian algorithm (HALA). DHALA is designed to solve convex nonlinear programming problems. We guarantee that the sequence generated by DHALA converges towards a Karush-Kuhn-Tucker point. We are going to observe that DHALA has a slight computational advantage in solving the problems over HALA. Finally, we will computationally illustrate our theoretical results.