帕金森病患者的体育锻炼:系统综述和网络荟萃分析。

M. Ernst, A. Folkerts, R. Gollan, E. Lieker, J. Caro-Valenzuela, Anne Adams, Nora Cryns, I. Monsef, A. Dresen, M. Roheger, Carsten Eggers, N. Skoetz, Elke Kalbe
{"title":"帕金森病患者的体育锻炼:系统综述和网络荟萃分析。","authors":"M. Ernst, A. Folkerts, R. Gollan, E. Lieker, J. Caro-Valenzuela, Anne Adams, Nora Cryns, I. Monsef, A. Dresen, M. Roheger, Carsten Eggers, N. Skoetz, Elke Kalbe","doi":"10.1002/14651858.CD013856.pub3","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nPhysical exercise is effective in managing Parkinson's disease (PD), but the relative benefit of different exercise types remains unclear.\n\n\nOBJECTIVES\nTo compare the effects of different types of physical exercise in adults with PD on the severity of motor signs, quality of life (QoL), and the occurrence of adverse events, and to generate a clinically meaningful treatment ranking using network meta-analyses (NMAs).\n\n\nSEARCH METHODS\nAn experienced information specialist performed a systematic search for relevant articles in CENTRAL, MEDLINE, Embase, and five other databases to 17 May 2021. We also searched trial registries, conference proceedings, and reference lists of identified studies up to this date.\n\n\nSELECTION CRITERIA\nWe included randomized controlled trials (RCTs) comparing one type of physical exercise for adults with PD to another type of exercise, a control group, or both.\n\n\nDATA COLLECTION AND ANALYSIS\nTwo review authors independently extracted data. A third author was involved in case of disagreements. We categorized the interventions and analyzed their effects on the severity of motor signs, QoL, freezing of gait, and functional mobility and balance up to six weeks after the intervention using NMAs. Two review authors independently assessed the risk of bias using the risk of bias 2 (RoB 2) tool and rated the confidence in the evidence using the CINeMA approach for results on the severity of motor signs and QoL. We consulted a third review author to resolve any disagreements. Due to heterogeneous reporting of adverse events, we summarized safety data narratively and rated our confidence in the evidence using the GRADE approach.\n\n\nMAIN RESULTS\nWe included 154 RCTs with a total of 7837 participants with mostly mild to moderate disease and no major cognitive impairment. The number of participants per study was small (mean 51, range from 10 to 474). The NMAs on the severity of motor signs and QoL included data from 60 (2721 participants), and 48 (3029 participants) trials, respectively. Eighty-five studies (5192 participants) provided safety data. Here, we present the main results. We observed evidence of beneficial effects for most types of physical exercise included in our review compared to a passive control group. The effects on the severity of motor signs and QoL are expressed as scores on the motor scale of the Unified Parkinson's Disease Rating Scale (UPDRS-M) and the Parkinson's Disease Questionnaire 39 (PDQ-39), respectively. For both scales, higher scores denote higher symptom burden. Therefore, negative estimates reflect improvement (minimum clinically important difference: -2.5 for UPDRS-M and -4.72 for PDQ-39). Severity of motor signs The evidence from the NMA (60 studies; 2721 participants) suggests that dance and gait/balance/functional training probably have a moderate beneficial effect on the severity of motor signs (dance: mean difference (MD) -10.18, 95% confidence interval (CI) -14.87 to -5.36; gait/balance/functional training: MD -7.50, 95% CI -11.39 to -3.48; moderate confidence), and multi-domain training probably has a small beneficial effect on the severity of motor signs (MD -5.90, 95% CI -9.11 to -2.68; moderate confidence). The evidence also suggests that endurance, aqua-based, strength/resistance, and mind-body training might have a small beneficial effect on the severity of motor signs (endurance training: MD -5.76, 95% CI -9.78 to -1.74; aqua-based training: MD -5.09, 95% CI -10.45 to 0.40; strength/resistance training: MD -4.96, 95% CI -9.51 to -0.40; mind-body training: MD -3.62, 95% CI -7.24 to 0.00; low confidence). The evidence is very uncertain about the effects of \"Lee Silverman Voice training BIG\" (LSVT BIG) and flexibility training on the severity of motor signs (LSVT BIG: MD -6.70, 95% CI -16.48 to 3.08; flexibility training: MD 4.20, 95% CI -1.61 to 9.92; very low confidence). Quality of life The evidence from the NMA (48 studies; 3029 participants) suggests that aqua-based training probably has a large beneficial effect on QoL (MD -15.15, 95% CI -23.43 to -6.87; moderate confidence). The evidence also suggests that mind-body, gait/balance/functional, and multi-domain training and dance might have a small beneficial effect on QoL (mind-body training: MD -7.22, 95% CI -13.57 to -0.70; gait/balance/functional training: MD -6.17, 95% CI -10.75 to -1.59; multi-domain training: MD -5.29, 95% CI -9.51 to -1.06; dance: MD -3.88, 95% CI -10.92 to 3.00; low confidence). The evidence is very uncertain about the effects of gaming, strength/resistance, endurance, and flexibility training on QoL (gaming: MD -8.99, 95% CI -23.43 to 5.46; strength/resistance training: MD -6.70, 95% CI -12.86 to -0.35; endurance training: MD -6.52, 95% CI -13.74 to 0.88; flexibility training: MD 1.94, 95% CI -10.40 to 14.27; very low confidence). Adverse events Only 85 studies (5192 participants) provided some kind of safety data, mostly only for the intervention groups. No adverse events (AEs) occurred in 40 studies and no serious AEs occurred in four studies. AEs occurred in 28 studies. The most frequently reported events were falls (18 studies) and pain (10 studies). The evidence is very uncertain about the effect of physical exercise on the risk of adverse events (very low confidence). Across outcomes, we observed little evidence of differences between exercise types.\n\n\nAUTHORS' CONCLUSIONS\nWe found evidence of beneficial effects on the severity of motor signs and QoL for most types of physical exercise for people with PD included in this review, but little evidence of differences between these interventions. Thus, our review highlights the importance of physical exercise regarding our primary outcomes severity of motor signs and QoL, while the exact exercise type might be secondary. Notably, this conclusion is consistent with the possibility that specific motor symptoms may be treated most effectively by PD-specific programs. Although the evidence is very uncertain about the effect of exercise on the risk of adverse events, the interventions included in our review were described as relatively safe. Larger, well-conducted studies are needed to increase confidence in the evidence. Additional studies recruiting people with advanced disease severity and cognitive impairment might help extend the generalizability of our findings to a broader range of people with PD.","PeriodicalId":515753,"journal":{"name":"The Cochrane database of systematic reviews","volume":"25 27","pages":"CD013856"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical exercise for people with Parkinson's disease: a systematic review and network meta-analysis.\",\"authors\":\"M. Ernst, A. Folkerts, R. Gollan, E. Lieker, J. Caro-Valenzuela, Anne Adams, Nora Cryns, I. Monsef, A. Dresen, M. Roheger, Carsten Eggers, N. Skoetz, Elke Kalbe\",\"doi\":\"10.1002/14651858.CD013856.pub3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\nPhysical exercise is effective in managing Parkinson's disease (PD), but the relative benefit of different exercise types remains unclear.\\n\\n\\nOBJECTIVES\\nTo compare the effects of different types of physical exercise in adults with PD on the severity of motor signs, quality of life (QoL), and the occurrence of adverse events, and to generate a clinically meaningful treatment ranking using network meta-analyses (NMAs).\\n\\n\\nSEARCH METHODS\\nAn experienced information specialist performed a systematic search for relevant articles in CENTRAL, MEDLINE, Embase, and five other databases to 17 May 2021. We also searched trial registries, conference proceedings, and reference lists of identified studies up to this date.\\n\\n\\nSELECTION CRITERIA\\nWe included randomized controlled trials (RCTs) comparing one type of physical exercise for adults with PD to another type of exercise, a control group, or both.\\n\\n\\nDATA COLLECTION AND ANALYSIS\\nTwo review authors independently extracted data. A third author was involved in case of disagreements. We categorized the interventions and analyzed their effects on the severity of motor signs, QoL, freezing of gait, and functional mobility and balance up to six weeks after the intervention using NMAs. Two review authors independently assessed the risk of bias using the risk of bias 2 (RoB 2) tool and rated the confidence in the evidence using the CINeMA approach for results on the severity of motor signs and QoL. We consulted a third review author to resolve any disagreements. Due to heterogeneous reporting of adverse events, we summarized safety data narratively and rated our confidence in the evidence using the GRADE approach.\\n\\n\\nMAIN RESULTS\\nWe included 154 RCTs with a total of 7837 participants with mostly mild to moderate disease and no major cognitive impairment. The number of participants per study was small (mean 51, range from 10 to 474). The NMAs on the severity of motor signs and QoL included data from 60 (2721 participants), and 48 (3029 participants) trials, respectively. Eighty-five studies (5192 participants) provided safety data. Here, we present the main results. We observed evidence of beneficial effects for most types of physical exercise included in our review compared to a passive control group. The effects on the severity of motor signs and QoL are expressed as scores on the motor scale of the Unified Parkinson's Disease Rating Scale (UPDRS-M) and the Parkinson's Disease Questionnaire 39 (PDQ-39), respectively. For both scales, higher scores denote higher symptom burden. Therefore, negative estimates reflect improvement (minimum clinically important difference: -2.5 for UPDRS-M and -4.72 for PDQ-39). Severity of motor signs The evidence from the NMA (60 studies; 2721 participants) suggests that dance and gait/balance/functional training probably have a moderate beneficial effect on the severity of motor signs (dance: mean difference (MD) -10.18, 95% confidence interval (CI) -14.87 to -5.36; gait/balance/functional training: MD -7.50, 95% CI -11.39 to -3.48; moderate confidence), and multi-domain training probably has a small beneficial effect on the severity of motor signs (MD -5.90, 95% CI -9.11 to -2.68; moderate confidence). The evidence also suggests that endurance, aqua-based, strength/resistance, and mind-body training might have a small beneficial effect on the severity of motor signs (endurance training: MD -5.76, 95% CI -9.78 to -1.74; aqua-based training: MD -5.09, 95% CI -10.45 to 0.40; strength/resistance training: MD -4.96, 95% CI -9.51 to -0.40; mind-body training: MD -3.62, 95% CI -7.24 to 0.00; low confidence). The evidence is very uncertain about the effects of \\\"Lee Silverman Voice training BIG\\\" (LSVT BIG) and flexibility training on the severity of motor signs (LSVT BIG: MD -6.70, 95% CI -16.48 to 3.08; flexibility training: MD 4.20, 95% CI -1.61 to 9.92; very low confidence). Quality of life The evidence from the NMA (48 studies; 3029 participants) suggests that aqua-based training probably has a large beneficial effect on QoL (MD -15.15, 95% CI -23.43 to -6.87; moderate confidence). The evidence also suggests that mind-body, gait/balance/functional, and multi-domain training and dance might have a small beneficial effect on QoL (mind-body training: MD -7.22, 95% CI -13.57 to -0.70; gait/balance/functional training: MD -6.17, 95% CI -10.75 to -1.59; multi-domain training: MD -5.29, 95% CI -9.51 to -1.06; dance: MD -3.88, 95% CI -10.92 to 3.00; low confidence). The evidence is very uncertain about the effects of gaming, strength/resistance, endurance, and flexibility training on QoL (gaming: MD -8.99, 95% CI -23.43 to 5.46; strength/resistance training: MD -6.70, 95% CI -12.86 to -0.35; endurance training: MD -6.52, 95% CI -13.74 to 0.88; flexibility training: MD 1.94, 95% CI -10.40 to 14.27; very low confidence). Adverse events Only 85 studies (5192 participants) provided some kind of safety data, mostly only for the intervention groups. No adverse events (AEs) occurred in 40 studies and no serious AEs occurred in four studies. AEs occurred in 28 studies. The most frequently reported events were falls (18 studies) and pain (10 studies). The evidence is very uncertain about the effect of physical exercise on the risk of adverse events (very low confidence). Across outcomes, we observed little evidence of differences between exercise types.\\n\\n\\nAUTHORS' CONCLUSIONS\\nWe found evidence of beneficial effects on the severity of motor signs and QoL for most types of physical exercise for people with PD included in this review, but little evidence of differences between these interventions. Thus, our review highlights the importance of physical exercise regarding our primary outcomes severity of motor signs and QoL, while the exact exercise type might be secondary. Notably, this conclusion is consistent with the possibility that specific motor symptoms may be treated most effectively by PD-specific programs. Although the evidence is very uncertain about the effect of exercise on the risk of adverse events, the interventions included in our review were described as relatively safe. Larger, well-conducted studies are needed to increase confidence in the evidence. Additional studies recruiting people with advanced disease severity and cognitive impairment might help extend the generalizability of our findings to a broader range of people with PD.\",\"PeriodicalId\":515753,\"journal\":{\"name\":\"The Cochrane database of systematic reviews\",\"volume\":\"25 27\",\"pages\":\"CD013856\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Cochrane database of systematic reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/14651858.CD013856.pub3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Cochrane database of systematic reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/14651858.CD013856.pub3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

40 项研究未出现不良事件(AE),4 项研究未出现严重不良事件。28项研究出现了不良反应。最常报告的事件是跌倒(18 项研究)和疼痛(10 项研究)。关于体育锻炼对不良事件风险的影响,证据非常不确定(置信度非常低)。在所有结果中,我们几乎没有观察到不同运动类型之间存在差异的证据。作者的结论 我们发现,有证据表明,本综述所纳入的大多数类型的体育锻炼对帕金森病患者运动体征的严重程度和 QoL 有益,但几乎没有证据表明这些干预措施之间存在差异。因此,我们的综述强调了体育锻炼对运动症状严重程度和 QoL 主要结果的重要性,而具体的锻炼类型可能是次要的。值得注意的是,这一结论与针对帕金森病的特定计划可能最有效地治疗特定运动症状的可能性是一致的。虽然运动对不良事件风险的影响尚不确定,但我们的综述中包含的干预措施被认为是相对安全的。要增加对证据的信心,还需要进行更大规模、更完善的研究。更多招募晚期疾病严重程度和认知障碍患者的研究可能有助于将我们的研究结果推广到更广泛的帕金森病患者中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical exercise for people with Parkinson's disease: a systematic review and network meta-analysis.
BACKGROUND Physical exercise is effective in managing Parkinson's disease (PD), but the relative benefit of different exercise types remains unclear. OBJECTIVES To compare the effects of different types of physical exercise in adults with PD on the severity of motor signs, quality of life (QoL), and the occurrence of adverse events, and to generate a clinically meaningful treatment ranking using network meta-analyses (NMAs). SEARCH METHODS An experienced information specialist performed a systematic search for relevant articles in CENTRAL, MEDLINE, Embase, and five other databases to 17 May 2021. We also searched trial registries, conference proceedings, and reference lists of identified studies up to this date. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing one type of physical exercise for adults with PD to another type of exercise, a control group, or both. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data. A third author was involved in case of disagreements. We categorized the interventions and analyzed their effects on the severity of motor signs, QoL, freezing of gait, and functional mobility and balance up to six weeks after the intervention using NMAs. Two review authors independently assessed the risk of bias using the risk of bias 2 (RoB 2) tool and rated the confidence in the evidence using the CINeMA approach for results on the severity of motor signs and QoL. We consulted a third review author to resolve any disagreements. Due to heterogeneous reporting of adverse events, we summarized safety data narratively and rated our confidence in the evidence using the GRADE approach. MAIN RESULTS We included 154 RCTs with a total of 7837 participants with mostly mild to moderate disease and no major cognitive impairment. The number of participants per study was small (mean 51, range from 10 to 474). The NMAs on the severity of motor signs and QoL included data from 60 (2721 participants), and 48 (3029 participants) trials, respectively. Eighty-five studies (5192 participants) provided safety data. Here, we present the main results. We observed evidence of beneficial effects for most types of physical exercise included in our review compared to a passive control group. The effects on the severity of motor signs and QoL are expressed as scores on the motor scale of the Unified Parkinson's Disease Rating Scale (UPDRS-M) and the Parkinson's Disease Questionnaire 39 (PDQ-39), respectively. For both scales, higher scores denote higher symptom burden. Therefore, negative estimates reflect improvement (minimum clinically important difference: -2.5 for UPDRS-M and -4.72 for PDQ-39). Severity of motor signs The evidence from the NMA (60 studies; 2721 participants) suggests that dance and gait/balance/functional training probably have a moderate beneficial effect on the severity of motor signs (dance: mean difference (MD) -10.18, 95% confidence interval (CI) -14.87 to -5.36; gait/balance/functional training: MD -7.50, 95% CI -11.39 to -3.48; moderate confidence), and multi-domain training probably has a small beneficial effect on the severity of motor signs (MD -5.90, 95% CI -9.11 to -2.68; moderate confidence). The evidence also suggests that endurance, aqua-based, strength/resistance, and mind-body training might have a small beneficial effect on the severity of motor signs (endurance training: MD -5.76, 95% CI -9.78 to -1.74; aqua-based training: MD -5.09, 95% CI -10.45 to 0.40; strength/resistance training: MD -4.96, 95% CI -9.51 to -0.40; mind-body training: MD -3.62, 95% CI -7.24 to 0.00; low confidence). The evidence is very uncertain about the effects of "Lee Silverman Voice training BIG" (LSVT BIG) and flexibility training on the severity of motor signs (LSVT BIG: MD -6.70, 95% CI -16.48 to 3.08; flexibility training: MD 4.20, 95% CI -1.61 to 9.92; very low confidence). Quality of life The evidence from the NMA (48 studies; 3029 participants) suggests that aqua-based training probably has a large beneficial effect on QoL (MD -15.15, 95% CI -23.43 to -6.87; moderate confidence). The evidence also suggests that mind-body, gait/balance/functional, and multi-domain training and dance might have a small beneficial effect on QoL (mind-body training: MD -7.22, 95% CI -13.57 to -0.70; gait/balance/functional training: MD -6.17, 95% CI -10.75 to -1.59; multi-domain training: MD -5.29, 95% CI -9.51 to -1.06; dance: MD -3.88, 95% CI -10.92 to 3.00; low confidence). The evidence is very uncertain about the effects of gaming, strength/resistance, endurance, and flexibility training on QoL (gaming: MD -8.99, 95% CI -23.43 to 5.46; strength/resistance training: MD -6.70, 95% CI -12.86 to -0.35; endurance training: MD -6.52, 95% CI -13.74 to 0.88; flexibility training: MD 1.94, 95% CI -10.40 to 14.27; very low confidence). Adverse events Only 85 studies (5192 participants) provided some kind of safety data, mostly only for the intervention groups. No adverse events (AEs) occurred in 40 studies and no serious AEs occurred in four studies. AEs occurred in 28 studies. The most frequently reported events were falls (18 studies) and pain (10 studies). The evidence is very uncertain about the effect of physical exercise on the risk of adverse events (very low confidence). Across outcomes, we observed little evidence of differences between exercise types. AUTHORS' CONCLUSIONS We found evidence of beneficial effects on the severity of motor signs and QoL for most types of physical exercise for people with PD included in this review, but little evidence of differences between these interventions. Thus, our review highlights the importance of physical exercise regarding our primary outcomes severity of motor signs and QoL, while the exact exercise type might be secondary. Notably, this conclusion is consistent with the possibility that specific motor symptoms may be treated most effectively by PD-specific programs. Although the evidence is very uncertain about the effect of exercise on the risk of adverse events, the interventions included in our review were described as relatively safe. Larger, well-conducted studies are needed to increase confidence in the evidence. Additional studies recruiting people with advanced disease severity and cognitive impairment might help extend the generalizability of our findings to a broader range of people with PD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信