G. Telesca, Anthony Robert Field, I. Ivanova-Stanik, S. Brezinsek, A. Chomiczewska, D. Frigione, L. Garzotti, E. Kowalska-Strzeciwilk, Peter Lomas, J. Mailloux, Gianluca Pucella, F. Rimini, D. van Eester, Roman Zagórski
{"title":"COREDIV 模拟 JET-ITER 像墙中的 D 和 D-T 大电流大功率基线脉冲","authors":"G. Telesca, Anthony Robert Field, I. Ivanova-Stanik, S. Brezinsek, A. Chomiczewska, D. Frigione, L. Garzotti, E. Kowalska-Strzeciwilk, Peter Lomas, J. Mailloux, Gianluca Pucella, F. Rimini, D. van Eester, Roman Zagórski","doi":"10.1088/1741-4326/ad3bcd","DOIUrl":null,"url":null,"abstract":"\n The two best performing pulses of the so called ITER-Baseline scenario (Ip=3.5 MA and Pin≈ 35 MW) of JET ILW, one in deuterium (D) the other in deuterium-tritium (D-T) plasma are examined and compared in this study. Generally, the D-T Baseline pulses exhibit an electron density level higher than the D pulses and the plasma energy is higher than in the comparable D pulses by up to 20%, reaching about 12 MJ in the pulse studied here. In contrast with the D pulses, the D-T pulses are often characterized by the increase in time of the radiated power in the mantle region, which may lead to the loss of the ELM activity when the threshold H-L transition power is approached and to the subsequent plasma disruption due to excessive radiation. In this study we try to identify the physical mechanisms responsible for this behaviour using the available experimental data (principally the total radiated power from the bolometry) and the results of the steady state fluid COREDIV model (1-D in the core, 2-D in the SOL), self-consistent with respect to core-SOL and to main plasma-impurities. The electron density and temperature profiles are numerically reconstructed as well as the radiated power density profiles, indicating no major difference in impurity transport in D and D T. In fact, the impurity transport coefficients used in COREDIV to match the experimental radiated power profiles are similar in the two pulses. The computed tungsten sources and densities are lower in the D-T pulse and the divertor impurity retention capability is a little better in the D-T pulse, indicating a stronger collisional drag force in the SOL. The higher electron density and the broadening of its profile are the main cause of the observed increase of the radiated power in the D-T pulse.","PeriodicalId":503481,"journal":{"name":"Nuclear Fusion","volume":"28 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COREDIV simulations of D and D-T high current-high power Baseline pulses in JET-ITER Like Wall\",\"authors\":\"G. Telesca, Anthony Robert Field, I. Ivanova-Stanik, S. Brezinsek, A. Chomiczewska, D. Frigione, L. Garzotti, E. Kowalska-Strzeciwilk, Peter Lomas, J. Mailloux, Gianluca Pucella, F. Rimini, D. van Eester, Roman Zagórski\",\"doi\":\"10.1088/1741-4326/ad3bcd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The two best performing pulses of the so called ITER-Baseline scenario (Ip=3.5 MA and Pin≈ 35 MW) of JET ILW, one in deuterium (D) the other in deuterium-tritium (D-T) plasma are examined and compared in this study. Generally, the D-T Baseline pulses exhibit an electron density level higher than the D pulses and the plasma energy is higher than in the comparable D pulses by up to 20%, reaching about 12 MJ in the pulse studied here. In contrast with the D pulses, the D-T pulses are often characterized by the increase in time of the radiated power in the mantle region, which may lead to the loss of the ELM activity when the threshold H-L transition power is approached and to the subsequent plasma disruption due to excessive radiation. In this study we try to identify the physical mechanisms responsible for this behaviour using the available experimental data (principally the total radiated power from the bolometry) and the results of the steady state fluid COREDIV model (1-D in the core, 2-D in the SOL), self-consistent with respect to core-SOL and to main plasma-impurities. The electron density and temperature profiles are numerically reconstructed as well as the radiated power density profiles, indicating no major difference in impurity transport in D and D T. In fact, the impurity transport coefficients used in COREDIV to match the experimental radiated power profiles are similar in the two pulses. The computed tungsten sources and densities are lower in the D-T pulse and the divertor impurity retention capability is a little better in the D-T pulse, indicating a stronger collisional drag force in the SOL. The higher electron density and the broadening of its profile are the main cause of the observed increase of the radiated power in the D-T pulse.\",\"PeriodicalId\":503481,\"journal\":{\"name\":\"Nuclear Fusion\",\"volume\":\"28 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-4326/ad3bcd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad3bcd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究对 JET ILW 的所谓 ITER 基准方案(Ip=3.5 MA,Pin≈35 MW)中性能最好的两个脉冲(一个在氘(D)等离子体中,另一个在氘-氚(D-T)等离子体中)进行了研究和比较。一般来说,D-T 基线电流脉冲的电子密度水平高于 D 脉冲,等离子体能量也比 D 脉冲高出 20%,在本文研究的脉冲中达到约 12 兆焦耳。与 D 脉冲相比,D-T 脉冲的特点通常是地幔区域的辐射功率随时间的推移而增加,这可能会在接近 H-L 转换功率阈值时导致 ELM 活动的丧失,并在随后因辐射过强而导致等离子体破坏。在这项研究中,我们试图利用现有的实验数据(主要是螺栓测量的总辐射功率)和稳态流体 COREDIV 模型(内核为一维,SOL 为二维)的结果来确定造成这种行为的物理机制,该模型在内核-SOL 和主要等离子体-杂质方面是自洽的。电子密度和温度曲线以及辐射功率密度曲线都是通过数值重建的,这表明 D 和 D T 中的杂质传输没有重大差异。事实上,COREDIV 中用于匹配实验辐射功率曲线的杂质传输系数在两个脉冲中是相似的。在 D-T 脉冲中,计算得出的钨源和钨密度较低,而在 D-T 脉冲中,分流器的杂质截留能力稍好,这表明 SOL 中的碰撞阻力较强。在 D-T 脉冲中,较高的电子密度及其轮廓的拓宽是观测到的辐射功率增加的主要原因。
COREDIV simulations of D and D-T high current-high power Baseline pulses in JET-ITER Like Wall
The two best performing pulses of the so called ITER-Baseline scenario (Ip=3.5 MA and Pin≈ 35 MW) of JET ILW, one in deuterium (D) the other in deuterium-tritium (D-T) plasma are examined and compared in this study. Generally, the D-T Baseline pulses exhibit an electron density level higher than the D pulses and the plasma energy is higher than in the comparable D pulses by up to 20%, reaching about 12 MJ in the pulse studied here. In contrast with the D pulses, the D-T pulses are often characterized by the increase in time of the radiated power in the mantle region, which may lead to the loss of the ELM activity when the threshold H-L transition power is approached and to the subsequent plasma disruption due to excessive radiation. In this study we try to identify the physical mechanisms responsible for this behaviour using the available experimental data (principally the total radiated power from the bolometry) and the results of the steady state fluid COREDIV model (1-D in the core, 2-D in the SOL), self-consistent with respect to core-SOL and to main plasma-impurities. The electron density and temperature profiles are numerically reconstructed as well as the radiated power density profiles, indicating no major difference in impurity transport in D and D T. In fact, the impurity transport coefficients used in COREDIV to match the experimental radiated power profiles are similar in the two pulses. The computed tungsten sources and densities are lower in the D-T pulse and the divertor impurity retention capability is a little better in the D-T pulse, indicating a stronger collisional drag force in the SOL. The higher electron density and the broadening of its profile are the main cause of the observed increase of the radiated power in the D-T pulse.