在教育领域利用可视化和机器学习技术:K-12 州评估数据案例研究

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Loni Taylor, Vibhuti Gupta, Kwanghee Jung
{"title":"在教育领域利用可视化和机器学习技术:K-12 州评估数据案例研究","authors":"Loni Taylor, Vibhuti Gupta, Kwanghee Jung","doi":"10.3390/mti8040028","DOIUrl":null,"url":null,"abstract":"As data-driven models gain importance in driving decisions and processes, recently, it has become increasingly important to visualize the data with both speed and accuracy. A massive volume of data is presently generated in the educational sphere from various learning platforms, tools, and institutions. The visual analytics of educational big data has the capability to improve student learning, develop strategies for personalized learning, and improve faculty productivity. However, there are limited advancements in the education domain for data-driven decision making leveraging the recent advancements in the field of machine learning. Some of the recent tools such as Tableau, Power BI, Microsoft Azure suite, Sisense, etc., leverage artificial intelligence and machine learning techniques to visualize data and generate insights from them; however, their applicability in educational advances is limited. This paper focuses on leveraging machine learning and visualization techniques to demonstrate their utility through a practical implementation using K-12 state assessment data compiled from the institutional websites of the States of Texas and Louisiana. Effective modeling and predictive analytics are the focus of the sample use case presented in this research. Our approach demonstrates the applicability of web technology in conjunction with machine learning to provide a cost-effective and timely solution to visualize and analyze big educational data. Additionally, ad hoc visualization provides contextual analysis in areas of concern for education agencies (EAs).","PeriodicalId":52297,"journal":{"name":"Multimodal Technologies and Interaction","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Visualization and Machine Learning Techniques in Education: A Case Study of K-12 State Assessment Data\",\"authors\":\"Loni Taylor, Vibhuti Gupta, Kwanghee Jung\",\"doi\":\"10.3390/mti8040028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As data-driven models gain importance in driving decisions and processes, recently, it has become increasingly important to visualize the data with both speed and accuracy. A massive volume of data is presently generated in the educational sphere from various learning platforms, tools, and institutions. The visual analytics of educational big data has the capability to improve student learning, develop strategies for personalized learning, and improve faculty productivity. However, there are limited advancements in the education domain for data-driven decision making leveraging the recent advancements in the field of machine learning. Some of the recent tools such as Tableau, Power BI, Microsoft Azure suite, Sisense, etc., leverage artificial intelligence and machine learning techniques to visualize data and generate insights from them; however, their applicability in educational advances is limited. This paper focuses on leveraging machine learning and visualization techniques to demonstrate their utility through a practical implementation using K-12 state assessment data compiled from the institutional websites of the States of Texas and Louisiana. Effective modeling and predictive analytics are the focus of the sample use case presented in this research. Our approach demonstrates the applicability of web technology in conjunction with machine learning to provide a cost-effective and timely solution to visualize and analyze big educational data. Additionally, ad hoc visualization provides contextual analysis in areas of concern for education agencies (EAs).\",\"PeriodicalId\":52297,\"journal\":{\"name\":\"Multimodal Technologies and Interaction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimodal Technologies and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mti8040028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Technologies and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mti8040028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着数据驱动模型在推动决策和流程方面的重要性日益凸显,近来,快速、准确地实现数据可视化变得越来越重要。目前,教育领域的各种学习平台、工具和机构都产生了大量数据。对教育大数据进行可视化分析能够改善学生的学习,制定个性化学习策略,提高教师的工作效率。然而,利用机器学习领域的最新进展进行数据驱动决策的教育领域进展有限。最近的一些工具,如 Tableau、Power BI、微软 Azure 套件、Sisense 等,利用人工智能和机器学习技术对数据进行可视化,并从中产生洞察力;但是,它们在教育领域的适用性有限。本文侧重于利用机器学习和可视化技术,通过使用从德克萨斯州和路易斯安那州机构网站上汇编的 K-12 州评估数据的实际实施来展示其实用性。有效建模和预测分析是本研究中介绍的示例用例的重点。我们的方法展示了网络技术与机器学习相结合的适用性,为教育大数据的可视化和分析提供了一种经济高效且及时的解决方案。此外,临时可视化还可为教育机构(EA)提供所关注领域的背景分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Visualization and Machine Learning Techniques in Education: A Case Study of K-12 State Assessment Data
As data-driven models gain importance in driving decisions and processes, recently, it has become increasingly important to visualize the data with both speed and accuracy. A massive volume of data is presently generated in the educational sphere from various learning platforms, tools, and institutions. The visual analytics of educational big data has the capability to improve student learning, develop strategies for personalized learning, and improve faculty productivity. However, there are limited advancements in the education domain for data-driven decision making leveraging the recent advancements in the field of machine learning. Some of the recent tools such as Tableau, Power BI, Microsoft Azure suite, Sisense, etc., leverage artificial intelligence and machine learning techniques to visualize data and generate insights from them; however, their applicability in educational advances is limited. This paper focuses on leveraging machine learning and visualization techniques to demonstrate their utility through a practical implementation using K-12 state assessment data compiled from the institutional websites of the States of Texas and Louisiana. Effective modeling and predictive analytics are the focus of the sample use case presented in this research. Our approach demonstrates the applicability of web technology in conjunction with machine learning to provide a cost-effective and timely solution to visualize and analyze big educational data. Additionally, ad hoc visualization provides contextual analysis in areas of concern for education agencies (EAs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multimodal Technologies and Interaction
Multimodal Technologies and Interaction Computer Science-Computer Science Applications
CiteScore
4.90
自引率
8.00%
发文量
94
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信