让我们说说轨迹:将 NLP 模型用于轨迹分析任务的愿景

IF 1.2 Q4 REMOTE SENSING
Mashaal Musleh, M. Mokbel
{"title":"让我们说说轨迹:将 NLP 模型用于轨迹分析任务的愿景","authors":"Mashaal Musleh, M. Mokbel","doi":"10.1145/3656470","DOIUrl":null,"url":null,"abstract":"The availability of trajectory data combined with various real life practical applications have sparked the interest of the research community to design a plethora of algorithms for various trajectory analysis techniques. However, there is an apparent lack of full-fledged systems that provide the infrastructure support for trajectory analysis techniques, which hinders the applicability of most of the designed algorithms. Inspired by the tremendous success of the BERT deep learning model in solving various Natural Language Processing (NLP) tasks, our vision is to have a BERT-like system for trajectory analysis tasks. We envision that in a few years, we will have such system, where no one needs to worry again about each specific trajectory analysis operation. Whether it is trajectory imputation, similarity, clustering, or whatever, it would be one system that researchers, developers, and practitioners can deploy to get high accuracy for their trajectory operations. Our vision stands on a solid ground that trajectories in a space are highly analogous to statements in a language. We outline the challenges and the road to our vision. Exploratory results confirm the promise and possibility of our vision.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Let’s Speak Trajectories: A Vision To Use NLP Models For Trajectory Analysis Tasks\",\"authors\":\"Mashaal Musleh, M. Mokbel\",\"doi\":\"10.1145/3656470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of trajectory data combined with various real life practical applications have sparked the interest of the research community to design a plethora of algorithms for various trajectory analysis techniques. However, there is an apparent lack of full-fledged systems that provide the infrastructure support for trajectory analysis techniques, which hinders the applicability of most of the designed algorithms. Inspired by the tremendous success of the BERT deep learning model in solving various Natural Language Processing (NLP) tasks, our vision is to have a BERT-like system for trajectory analysis tasks. We envision that in a few years, we will have such system, where no one needs to worry again about each specific trajectory analysis operation. Whether it is trajectory imputation, similarity, clustering, or whatever, it would be one system that researchers, developers, and practitioners can deploy to get high accuracy for their trajectory operations. Our vision stands on a solid ground that trajectories in a space are highly analogous to statements in a language. We outline the challenges and the road to our vision. Exploratory results confirm the promise and possibility of our vision.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3656470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3656470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

轨迹数据的可用性与各种现实生活中的实际应用相结合,激发了研究界为各种轨迹分析技术设计大量算法的兴趣。然而,为轨迹分析技术提供基础设施支持的成熟系统明显缺乏,这阻碍了大多数设计算法的适用性。受 BERT 深度学习模型在解决各种自然语言处理(NLP)任务方面取得巨大成功的启发,我们的愿景是为轨迹分析任务提供类似 BERT 的系统。我们的设想是,几年后,我们将拥有这样的系统,人们无需再为每个具体的轨迹分析操作操心。无论是轨迹估算、相似性、聚类还是其他,研究人员、开发人员和从业人员都可以部署这样一个系统,以获得高精度的轨迹操作。我们的愿景建立在一个坚实的基础之上,即空间中的轨迹与语言中的语句高度相似。我们概述了实现我们愿景的挑战和道路。探索结果证实了我们愿景的前景和可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Let’s Speak Trajectories: A Vision To Use NLP Models For Trajectory Analysis Tasks
The availability of trajectory data combined with various real life practical applications have sparked the interest of the research community to design a plethora of algorithms for various trajectory analysis techniques. However, there is an apparent lack of full-fledged systems that provide the infrastructure support for trajectory analysis techniques, which hinders the applicability of most of the designed algorithms. Inspired by the tremendous success of the BERT deep learning model in solving various Natural Language Processing (NLP) tasks, our vision is to have a BERT-like system for trajectory analysis tasks. We envision that in a few years, we will have such system, where no one needs to worry again about each specific trajectory analysis operation. Whether it is trajectory imputation, similarity, clustering, or whatever, it would be one system that researchers, developers, and practitioners can deploy to get high accuracy for their trajectory operations. Our vision stands on a solid ground that trajectories in a space are highly analogous to statements in a language. We outline the challenges and the road to our vision. Exploratory results confirm the promise and possibility of our vision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
5.30%
发文量
43
期刊介绍: ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信