通过高级自然语言处理模型和分类器增强二进制文本分类中的情感分析预测

Zhengbing Hu, I. Dychka, K. Potapova, Vasyl Meliukh
{"title":"通过高级自然语言处理模型和分类器增强二进制文本分类中的情感分析预测","authors":"Zhengbing Hu, I. Dychka, K. Potapova, Vasyl Meliukh","doi":"10.5815/ijitcs.2024.02.02","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is a critical component in natural language processing applications, particularly for text classification. By employing state-of-the-art techniques such as ensemble methods, transfer learning and deep learning architectures, our methodology significantly enhances the robustness and precision of sentiment predictions. We systematically investigate the impact of various NLP models, including recurrent neural networks and transformer-based architectures, on sentiment classification tasks. Furthermore, we introduce a novel ensemble method that combines the strengths of multiple classifiers to improve the predictive ability of the system. The results demonstrate the potential of integrating state-of-the-art Natural Language Processing (NLP) models with ensemble classifiers to advance sentiment analysis. This lays the foundation for a more advanced comprehension of textual sentiments in diverse applications.","PeriodicalId":130361,"journal":{"name":"International Journal of Information Technology and Computer Science","volume":"140 S261","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmenting Sentiment Analysis Prediction in Binary Text Classification through Advanced Natural Language Processing Models and Classifiers\",\"authors\":\"Zhengbing Hu, I. Dychka, K. Potapova, Vasyl Meliukh\",\"doi\":\"10.5815/ijitcs.2024.02.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis is a critical component in natural language processing applications, particularly for text classification. By employing state-of-the-art techniques such as ensemble methods, transfer learning and deep learning architectures, our methodology significantly enhances the robustness and precision of sentiment predictions. We systematically investigate the impact of various NLP models, including recurrent neural networks and transformer-based architectures, on sentiment classification tasks. Furthermore, we introduce a novel ensemble method that combines the strengths of multiple classifiers to improve the predictive ability of the system. The results demonstrate the potential of integrating state-of-the-art Natural Language Processing (NLP) models with ensemble classifiers to advance sentiment analysis. This lays the foundation for a more advanced comprehension of textual sentiments in diverse applications.\",\"PeriodicalId\":130361,\"journal\":{\"name\":\"International Journal of Information Technology and Computer Science\",\"volume\":\"140 S261\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijitcs.2024.02.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijitcs.2024.02.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感分析是自然语言处理应用中的重要组成部分,尤其是在文本分类方面。通过采用集合方法、迁移学习和深度学习架构等最先进的技术,我们的方法显著提高了情感预测的稳健性和精确度。我们系统地研究了各种 NLP 模型(包括递归神经网络和基于转换器的架构)对情感分类任务的影响。此外,我们还引入了一种新颖的集合方法,该方法结合了多个分类器的优势,从而提高了系统的预测能力。研究结果表明,将最先进的自然语言处理(NLP)模型与集合分类器整合在一起,具有推进情感分析的潜力。这为在各种应用中更深入地理解文本情感奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmenting Sentiment Analysis Prediction in Binary Text Classification through Advanced Natural Language Processing Models and Classifiers
Sentiment analysis is a critical component in natural language processing applications, particularly for text classification. By employing state-of-the-art techniques such as ensemble methods, transfer learning and deep learning architectures, our methodology significantly enhances the robustness and precision of sentiment predictions. We systematically investigate the impact of various NLP models, including recurrent neural networks and transformer-based architectures, on sentiment classification tasks. Furthermore, we introduce a novel ensemble method that combines the strengths of multiple classifiers to improve the predictive ability of the system. The results demonstrate the potential of integrating state-of-the-art Natural Language Processing (NLP) models with ensemble classifiers to advance sentiment analysis. This lays the foundation for a more advanced comprehension of textual sentiments in diverse applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信