{"title":"用于替代核反应堆中异种金属焊缝的 3D 打印功能分级材料的特性","authors":"Ji-Hyun Yoon, Jeoung Han Kim","doi":"10.24425/amm.2024.147782","DOIUrl":null,"url":null,"abstract":"The dissimilar metal welds in the most of the reactors are connections between low alloy steel parts and stainless steel piping. There is a high possibility of primary water stress corrosion cracking (PWSCC) damage attributed to residual stress caused by the difference in material properties in the dissimilar metal weld joints. A number of accidents such as leakage of radioactive coolant due to PWSCC have been reported around the world, posing a great threat to nuclear safety. The objective of this study is to develop a technology that can fundamentally remove dissimilar metal welds by replacing the existing dissimilar metal parts with the functionally graded material (FGM) manufactured by metal 3D printing consisting of low alloy steel and austenitic stainless steel. A powder production, mixing ratio calculation, and metal 3D printing were performed to fabricate the low alloy steel-stainless steel FGM, and microstructure analysis, mechanical properties, and coefficient of thermal expansion (CTE) measurement of the FGM were performed. As a result, it is observed that CTE tended to increase as the austenite content increased in FGM. The gradual change of coefficient of thermal expansion in a FGM showed that the additive manufacturing using 3D printing was effective for preventing an abrupt change in thermal expansion properties throughout their layers.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of 3D Printed Functionally Graded Material for Replacement of Dissimilar Metal Weld in Nuclear Reactor\",\"authors\":\"Ji-Hyun Yoon, Jeoung Han Kim\",\"doi\":\"10.24425/amm.2024.147782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dissimilar metal welds in the most of the reactors are connections between low alloy steel parts and stainless steel piping. There is a high possibility of primary water stress corrosion cracking (PWSCC) damage attributed to residual stress caused by the difference in material properties in the dissimilar metal weld joints. A number of accidents such as leakage of radioactive coolant due to PWSCC have been reported around the world, posing a great threat to nuclear safety. The objective of this study is to develop a technology that can fundamentally remove dissimilar metal welds by replacing the existing dissimilar metal parts with the functionally graded material (FGM) manufactured by metal 3D printing consisting of low alloy steel and austenitic stainless steel. A powder production, mixing ratio calculation, and metal 3D printing were performed to fabricate the low alloy steel-stainless steel FGM, and microstructure analysis, mechanical properties, and coefficient of thermal expansion (CTE) measurement of the FGM were performed. As a result, it is observed that CTE tended to increase as the austenite content increased in FGM. The gradual change of coefficient of thermal expansion in a FGM showed that the additive manufacturing using 3D printing was effective for preventing an abrupt change in thermal expansion properties throughout their layers.\",\"PeriodicalId\":8304,\"journal\":{\"name\":\"Archives of Metallurgy and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Metallurgy and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.24425/amm.2024.147782\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Metallurgy and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.24425/amm.2024.147782","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
大多数反应堆中的异种金属焊缝是低合金钢部件与不锈钢管道之间的连接。由于异种金属焊点的材料特性不同,极有可能因残余应力而造成一次水应力腐蚀开裂(PWSCC)。世界各地已报告了多起事故,如因原生水应力腐蚀开裂导致放射性冷却剂泄漏,对核安全构成了极大威胁。本研究的目的是开发一种技术,用低合金钢和奥氏体不锈钢组成的金属 3D 打印制造的功能分级材料(FGM)取代现有的异种金属部件,从根本上消除异种金属焊缝。为制造低合金钢-不锈钢 FGM,进行了粉末生产、混合比计算和金属 3D 打印,并对 FGM 进行了微观结构分析、机械性能和热膨胀系数 (CTE) 测量。结果表明,随着 FGM 中奥氏体含量的增加,CTE 呈上升趋势。FGM 中热膨胀系数的逐渐变化表明,使用三维打印技术进行增材制造可有效防止各层热膨胀特性的突然变化。
Characteristics of 3D Printed Functionally Graded Material for Replacement of Dissimilar Metal Weld in Nuclear Reactor
The dissimilar metal welds in the most of the reactors are connections between low alloy steel parts and stainless steel piping. There is a high possibility of primary water stress corrosion cracking (PWSCC) damage attributed to residual stress caused by the difference in material properties in the dissimilar metal weld joints. A number of accidents such as leakage of radioactive coolant due to PWSCC have been reported around the world, posing a great threat to nuclear safety. The objective of this study is to develop a technology that can fundamentally remove dissimilar metal welds by replacing the existing dissimilar metal parts with the functionally graded material (FGM) manufactured by metal 3D printing consisting of low alloy steel and austenitic stainless steel. A powder production, mixing ratio calculation, and metal 3D printing were performed to fabricate the low alloy steel-stainless steel FGM, and microstructure analysis, mechanical properties, and coefficient of thermal expansion (CTE) measurement of the FGM were performed. As a result, it is observed that CTE tended to increase as the austenite content increased in FGM. The gradual change of coefficient of thermal expansion in a FGM showed that the additive manufacturing using 3D printing was effective for preventing an abrupt change in thermal expansion properties throughout their layers.
期刊介绍:
The Archives of Metallurgy and Materials is covered in the following Institute for Scientific Information products: SciSearch (the Science Citation Index - Expanded), Research Alert, Materials Science Citation Index, and Current Contents / Engineering, Computing and Technology.
Articles published in the Archives of Metallurgy and Materials are also indexed or abstracted by Cambridge Scientific Abstracts.