{"title":"两个独立变量情况下半线性双曲方程考奇问题的经典解法","authors":"V. I. Korzyuk, J. V. Rudzko","doi":"10.26907/0021-3446-2024-3-50-63","DOIUrl":null,"url":null,"abstract":"In the upper half-plane, we consider a semilinear hyperbolic partial differential equation of order higher than two. The operator in the equation is a composition of first-order differential operators. The equation is accompanied with Cauchy conditions. The solution is constructed in an implicit analytical form as a solution of some integral equation. The local solvability of this equation is proved by the Banach fixed point theorem and/or the Schauder fixed point theorem. The global solvability of this equation is proved by the Leray-Schauder fixed point theorem. For the problem in question, the uniqueness of the solution is proved and the conditions under which its classical solution exists are established.","PeriodicalId":507800,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika","volume":"282 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical solution of the Cauchy problem for a semilinear hyperbolic equation in the case of two independent variables\",\"authors\":\"V. I. Korzyuk, J. V. Rudzko\",\"doi\":\"10.26907/0021-3446-2024-3-50-63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the upper half-plane, we consider a semilinear hyperbolic partial differential equation of order higher than two. The operator in the equation is a composition of first-order differential operators. The equation is accompanied with Cauchy conditions. The solution is constructed in an implicit analytical form as a solution of some integral equation. The local solvability of this equation is proved by the Banach fixed point theorem and/or the Schauder fixed point theorem. The global solvability of this equation is proved by the Leray-Schauder fixed point theorem. For the problem in question, the uniqueness of the solution is proved and the conditions under which its classical solution exists are established.\",\"PeriodicalId\":507800,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika\",\"volume\":\"282 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26907/0021-3446-2024-3-50-63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/0021-3446-2024-3-50-63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classical solution of the Cauchy problem for a semilinear hyperbolic equation in the case of two independent variables
In the upper half-plane, we consider a semilinear hyperbolic partial differential equation of order higher than two. The operator in the equation is a composition of first-order differential operators. The equation is accompanied with Cauchy conditions. The solution is constructed in an implicit analytical form as a solution of some integral equation. The local solvability of this equation is proved by the Banach fixed point theorem and/or the Schauder fixed point theorem. The global solvability of this equation is proved by the Leray-Schauder fixed point theorem. For the problem in question, the uniqueness of the solution is proved and the conditions under which its classical solution exists are established.