使用应急元件作为微处理器保护的输入信息信号

Q3 Energy
I. V. Novash, V. Rumiantsev, A. A. Dziaruhina, E. V. Buloichik, M. S. Коnakhau
{"title":"使用应急元件作为微处理器保护的输入信息信号","authors":"I. V. Novash, V. Rumiantsev, A. A. Dziaruhina, E. V. Buloichik, M. S. Коnakhau","doi":"10.21122/1029-7448-2024-67-2-115-124","DOIUrl":null,"url":null,"abstract":"A technique is proposed for the formation of emergency components of current and voltage of a power transmission line by a computational experiment in the MATLAB-Simulink dynamic simulating system (DSS) in order to use them as input information signals of additional stages of microprocessor protections with increased sensitivity. The emergency components of current and voltage are determined using orthogonal components. The emergency component of the short-circuit current is defined as the difference between the vectors (sinusoids) of the main harmonic of the short-circuit current and the current of the previous mode, if the effective value of this difference exceeds some predetermined value. Similarly, the emergency component of the voltage is determined, taking into account the fact that in emergency mode, the voltage at the place of installation of protection does not increase, but decreases. A computer software package (CSP) has been developed in the MATLAB-Simulink DSS to study the functional properties of microprocessor protection using emergency components of currents and phase voltages of a power transmission line of 6(10)–35 kV. The results of the formation of emergency components by models of digital measuring bodies of current and voltage protection are presented, confirming the operability of the developed software package. A CSP has been developed for calculating emergency components of currents and voltages of a power transmission line of 6(10)–35 kV using orthogonal components based on a mathematical model of the power supply unit of the protected line. The results of calculations of emergency components are presented, confirming the operability of the developed software package; a comparison of the results of calculating emergency components obtained by modeling in the MATLAB-Simulink DSS and using a CSP based on a mathematical model is also carried out.","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"54 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Emergency Components as Input Information Signals for Microprocessor Protection\",\"authors\":\"I. V. Novash, V. Rumiantsev, A. A. Dziaruhina, E. V. Buloichik, M. S. Коnakhau\",\"doi\":\"10.21122/1029-7448-2024-67-2-115-124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technique is proposed for the formation of emergency components of current and voltage of a power transmission line by a computational experiment in the MATLAB-Simulink dynamic simulating system (DSS) in order to use them as input information signals of additional stages of microprocessor protections with increased sensitivity. The emergency components of current and voltage are determined using orthogonal components. The emergency component of the short-circuit current is defined as the difference between the vectors (sinusoids) of the main harmonic of the short-circuit current and the current of the previous mode, if the effective value of this difference exceeds some predetermined value. Similarly, the emergency component of the voltage is determined, taking into account the fact that in emergency mode, the voltage at the place of installation of protection does not increase, but decreases. A computer software package (CSP) has been developed in the MATLAB-Simulink DSS to study the functional properties of microprocessor protection using emergency components of currents and phase voltages of a power transmission line of 6(10)–35 kV. The results of the formation of emergency components by models of digital measuring bodies of current and voltage protection are presented, confirming the operability of the developed software package. A CSP has been developed for calculating emergency components of currents and voltages of a power transmission line of 6(10)–35 kV using orthogonal components based on a mathematical model of the power supply unit of the protected line. The results of calculations of emergency components are presented, confirming the operability of the developed software package; a comparison of the results of calculating emergency components obtained by modeling in the MATLAB-Simulink DSS and using a CSP based on a mathematical model is also carried out.\",\"PeriodicalId\":52141,\"journal\":{\"name\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"volume\":\"54 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/1029-7448-2024-67-2-115-124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2024-67-2-115-124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

通过在 MATLAB-Simulink 动态模拟系统(DSS)中进行计算实验,提出了一种输电线路电流和电压紧急分量的形成技术,以便将其用作灵敏度更高的微处理器保护附加级的输入信息信号。使用正交分量确定电流和电压的紧急分量。短路电流的紧急分量被定义为短路电流主谐波矢量(正弦波)与前一模式电流之间的差值,如果该差值的有效值超过某个预定值。同样,考虑到在紧急模式下,保护装置安装地点的电压不是升高而是降低,因此也要确定电压的紧急分量。在 MATLAB-Simulink DSS 中开发了一个计算机软件包 (CSP),利用 6(10)-35 kV 输电线路的电流和相电压的紧急分量来研究微处理器保护的功能特性。报告介绍了电流和电压保护数字测量机构模型形成应急组件的结果,证实了所开发软件包的可操作性。根据受保护线路供电装置的数学模型,利用正交分量开发了计算 6(10)-35 kV 输电线路电流和电压紧急分量的 CSP。文中介绍了紧急分量的计算结果,证实了所开发软件包的可操作性;还对通过 MATLAB-Simulink DSS 建模和使用基于数学模型的 CSP 计算紧急分量的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Use of Emergency Components as Input Information Signals for Microprocessor Protection
A technique is proposed for the formation of emergency components of current and voltage of a power transmission line by a computational experiment in the MATLAB-Simulink dynamic simulating system (DSS) in order to use them as input information signals of additional stages of microprocessor protections with increased sensitivity. The emergency components of current and voltage are determined using orthogonal components. The emergency component of the short-circuit current is defined as the difference between the vectors (sinusoids) of the main harmonic of the short-circuit current and the current of the previous mode, if the effective value of this difference exceeds some predetermined value. Similarly, the emergency component of the voltage is determined, taking into account the fact that in emergency mode, the voltage at the place of installation of protection does not increase, but decreases. A computer software package (CSP) has been developed in the MATLAB-Simulink DSS to study the functional properties of microprocessor protection using emergency components of currents and phase voltages of a power transmission line of 6(10)–35 kV. The results of the formation of emergency components by models of digital measuring bodies of current and voltage protection are presented, confirming the operability of the developed software package. A CSP has been developed for calculating emergency components of currents and voltages of a power transmission line of 6(10)–35 kV using orthogonal components based on a mathematical model of the power supply unit of the protected line. The results of calculations of emergency components are presented, confirming the operability of the developed software package; a comparison of the results of calculating emergency components obtained by modeling in the MATLAB-Simulink DSS and using a CSP based on a mathematical model is also carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
32
审稿时长
8 weeks
期刊介绍: The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信