{"title":"可数凝聚映射的一些定点结果","authors":"Mohamed Yassin Abdallah, Khalid Latrach","doi":"10.1007/s13370-024-01178-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we establish some fixed point results for continuous countably condensing maps. We derive results of Altman’s type, Leray-Schauder’s type, Krasnosel’skii’s type and Krasnoselskii-Schafer’s type. One of the main tools in our analysis is a result due to S. J. Daher (Theorem 2.1). We conclude the paper by discussing existence results for a nonlinear Volterra integral equation.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some fixed point results for countably condensing mappings\",\"authors\":\"Mohamed Yassin Abdallah, Khalid Latrach\",\"doi\":\"10.1007/s13370-024-01178-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we establish some fixed point results for continuous countably condensing maps. We derive results of Altman’s type, Leray-Schauder’s type, Krasnosel’skii’s type and Krasnoselskii-Schafer’s type. One of the main tools in our analysis is a result due to S. J. Daher (Theorem 2.1). We conclude the paper by discussing existence results for a nonlinear Volterra integral equation.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-024-01178-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01178-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们建立了连续可数凝聚映射的一些定点结果。我们推导出了 Altman 型、Leray-Schauder 型、Krasnosel'skii 型和 Krasnoselskii-Schafer 型的结果。我们分析的主要工具之一是 S. J. Daher 的一个结果(定理 2.1)。最后,我们将讨论非线性 Volterra 积分方程的存在性结果。
Some fixed point results for countably condensing mappings
In this paper we establish some fixed point results for continuous countably condensing maps. We derive results of Altman’s type, Leray-Schauder’s type, Krasnosel’skii’s type and Krasnoselskii-Schafer’s type. One of the main tools in our analysis is a result due to S. J. Daher (Theorem 2.1). We conclude the paper by discussing existence results for a nonlinear Volterra integral equation.