中国东北暖季冷涡暴雨的水汽来源和定量贡献统计分析

Yuting Yang, Xiaopeng Cui, Ying Li, Lijun Huang, Jia Tian
{"title":"中国东北暖季冷涡暴雨的水汽来源和定量贡献统计分析","authors":"Yuting Yang, Xiaopeng Cui, Ying Li, Lijun Huang, Jia Tian","doi":"10.1175/jhm-d-23-0226.1","DOIUrl":null,"url":null,"abstract":"\nThe northeast cold vortex (NECV) is an essential system in the northeast region of China (NER). Understanding the moisture source and associated transport characteristics of NECV rainstorms is key to the knowledge of its mechanisms. In this study, we focus on two NECV rainstorm centers during the warm season (May-September) from 2008 to 2013. The FLEXPART model and quantitative contribution analysis method are applied to reveal the moisture sources and their quantitative contribution. The results demonstrate that for the northern NECV rainstorm center (R1), Northeast Asia (35.66%), east-central China and its coastal regions (29.14%) make prominent moisture contributions, followed by R1 (11.37%). Whereas east-central China and its coastal regions (45.16%), the southern NECV rainstorm center itself (R2, 17.90%) and the Northwest Pacific (10.24%) principally contribute to R2. Moisture uptake of Northeast Asia differs between R1 and R2, which could serve as one of the vital indicators to judge where NECV rainstorm falls in NER. Moisture from the Arabian Sea, the Bay of Bengal, and the South China Sea, suffers massive en-route loss, although these sources’ contribution and uptake are positively correlated with the intensity and scale of NECV rainstorms in the two centers. There exists inter-month and geographical variability in NECV rainstorms when the main moisture source region contributes the most. Regulated by the atmospheric circulation and the East Asian summer monsoon, the particle trajectories and source contributions of NECV rainstorms vary from month to month. Sources’ contribution also turns out to be diverse in the overall warm season.","PeriodicalId":503314,"journal":{"name":"Journal of Hydrometeorology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Analysis of Moisture Sources and Quantitative Contribution of Cold Vortex Rainstorms in Northeast China During Warm Season\",\"authors\":\"Yuting Yang, Xiaopeng Cui, Ying Li, Lijun Huang, Jia Tian\",\"doi\":\"10.1175/jhm-d-23-0226.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe northeast cold vortex (NECV) is an essential system in the northeast region of China (NER). Understanding the moisture source and associated transport characteristics of NECV rainstorms is key to the knowledge of its mechanisms. In this study, we focus on two NECV rainstorm centers during the warm season (May-September) from 2008 to 2013. The FLEXPART model and quantitative contribution analysis method are applied to reveal the moisture sources and their quantitative contribution. The results demonstrate that for the northern NECV rainstorm center (R1), Northeast Asia (35.66%), east-central China and its coastal regions (29.14%) make prominent moisture contributions, followed by R1 (11.37%). Whereas east-central China and its coastal regions (45.16%), the southern NECV rainstorm center itself (R2, 17.90%) and the Northwest Pacific (10.24%) principally contribute to R2. Moisture uptake of Northeast Asia differs between R1 and R2, which could serve as one of the vital indicators to judge where NECV rainstorm falls in NER. Moisture from the Arabian Sea, the Bay of Bengal, and the South China Sea, suffers massive en-route loss, although these sources’ contribution and uptake are positively correlated with the intensity and scale of NECV rainstorms in the two centers. There exists inter-month and geographical variability in NECV rainstorms when the main moisture source region contributes the most. Regulated by the atmospheric circulation and the East Asian summer monsoon, the particle trajectories and source contributions of NECV rainstorms vary from month to month. Sources’ contribution also turns out to be diverse in the overall warm season.\",\"PeriodicalId\":503314,\"journal\":{\"name\":\"Journal of Hydrometeorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrometeorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/jhm-d-23-0226.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jhm-d-23-0226.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

东北冷涡(NECV)是中国东北地区(NER)的一个重要系统。了解东北冷涡暴雨的水汽来源和相关传输特征是了解其机理的关键。在本研究中,我们重点研究了2008-2013年暖季(5-9月)的两个NECV暴雨中心。应用 FLEXPART 模型和定量贡献分析方法揭示了水汽来源及其定量贡献。结果表明,在北方 NECV 暴雨中心(R1),东北亚(35.66%)、中国中东部及其沿海地区(29.14%)的水汽贡献突出,其次是 R1(11.37%)。而中国中东部及其沿海地区(45.16%)、NECV 南方暴雨中心本身(R2,17.90%)和西北太平洋(10.24%)对 R2 有主要贡献。东北亚吸收的水汽在 R1 和 R2 之间存在差异,这可以作为判断 NECV 暴雨落在东北亚地区的重要指标之一。来自阿拉伯海、孟加拉湾和中国南海的水汽在途中大量流失,尽管这些水汽来源的贡献和吸收与这两个中心的 NECV 暴雨强度和规模呈正相关。当主要水汽源区域贡献最大时,NECV 暴雨存在月际和地理差异。受大气环流和东亚夏季季风的影响,NECV 暴雨的粒子轨迹和水汽源贡献在月与月之间存在差异。在整个暖季,水汽源的贡献也各不相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Analysis of Moisture Sources and Quantitative Contribution of Cold Vortex Rainstorms in Northeast China During Warm Season
The northeast cold vortex (NECV) is an essential system in the northeast region of China (NER). Understanding the moisture source and associated transport characteristics of NECV rainstorms is key to the knowledge of its mechanisms. In this study, we focus on two NECV rainstorm centers during the warm season (May-September) from 2008 to 2013. The FLEXPART model and quantitative contribution analysis method are applied to reveal the moisture sources and their quantitative contribution. The results demonstrate that for the northern NECV rainstorm center (R1), Northeast Asia (35.66%), east-central China and its coastal regions (29.14%) make prominent moisture contributions, followed by R1 (11.37%). Whereas east-central China and its coastal regions (45.16%), the southern NECV rainstorm center itself (R2, 17.90%) and the Northwest Pacific (10.24%) principally contribute to R2. Moisture uptake of Northeast Asia differs between R1 and R2, which could serve as one of the vital indicators to judge where NECV rainstorm falls in NER. Moisture from the Arabian Sea, the Bay of Bengal, and the South China Sea, suffers massive en-route loss, although these sources’ contribution and uptake are positively correlated with the intensity and scale of NECV rainstorms in the two centers. There exists inter-month and geographical variability in NECV rainstorms when the main moisture source region contributes the most. Regulated by the atmospheric circulation and the East Asian summer monsoon, the particle trajectories and source contributions of NECV rainstorms vary from month to month. Sources’ contribution also turns out to be diverse in the overall warm season.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信