Ying Zhang, Zhiwen Yu, Minling Dang, En Xu, Bin Guo, Yuxuan Liang, Yifang Yin, Roger Zimmermann
{"title":"人类流动的可预测性:从个人到集体(展望论文)","authors":"Ying Zhang, Zhiwen Yu, Minling Dang, En Xu, Bin Guo, Yuxuan Liang, Yifang Yin, Roger Zimmermann","doi":"10.1145/3656640","DOIUrl":null,"url":null,"abstract":"Human mobility is the foundation of urban dynamics and its prediction significantly benefits various downstream location-based services. Nowadays, while deep learning approaches are dominating the mobility prediction field where various model architectures/designs are continuously updating to push up the prediction accuracy, there naturally arises a question: whether these models are sufficiently good to reach the best possible prediction accuracy? To answer this question, predictability study is a method that quantifies the inherent regularities of the human mobility data and links the result to that limit. Mainstream predictability studies achieve this by analyzing the individual trajectories and merging all individual results to obtain an upper bound. However, the multiple individuals composing the city are not totally independent and the individual behavior is heavily influenced by its implicit or explicit surroundings. Therefore, the collective factor should be considered in the mobility predictability measurement, which has not been addressed before. This vision paper points out this concern and envisions a few potential research problems along such an individual-to-collective transition from both data and methodology aspects. We hope the discussion in this paper sheds some light on the human mobility predictability community.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictability in Human Mobility: From Individual to Collective (Vision Paper)\",\"authors\":\"Ying Zhang, Zhiwen Yu, Minling Dang, En Xu, Bin Guo, Yuxuan Liang, Yifang Yin, Roger Zimmermann\",\"doi\":\"10.1145/3656640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human mobility is the foundation of urban dynamics and its prediction significantly benefits various downstream location-based services. Nowadays, while deep learning approaches are dominating the mobility prediction field where various model architectures/designs are continuously updating to push up the prediction accuracy, there naturally arises a question: whether these models are sufficiently good to reach the best possible prediction accuracy? To answer this question, predictability study is a method that quantifies the inherent regularities of the human mobility data and links the result to that limit. Mainstream predictability studies achieve this by analyzing the individual trajectories and merging all individual results to obtain an upper bound. However, the multiple individuals composing the city are not totally independent and the individual behavior is heavily influenced by its implicit or explicit surroundings. Therefore, the collective factor should be considered in the mobility predictability measurement, which has not been addressed before. This vision paper points out this concern and envisions a few potential research problems along such an individual-to-collective transition from both data and methodology aspects. We hope the discussion in this paper sheds some light on the human mobility predictability community.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3656640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3656640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Predictability in Human Mobility: From Individual to Collective (Vision Paper)
Human mobility is the foundation of urban dynamics and its prediction significantly benefits various downstream location-based services. Nowadays, while deep learning approaches are dominating the mobility prediction field where various model architectures/designs are continuously updating to push up the prediction accuracy, there naturally arises a question: whether these models are sufficiently good to reach the best possible prediction accuracy? To answer this question, predictability study is a method that quantifies the inherent regularities of the human mobility data and links the result to that limit. Mainstream predictability studies achieve this by analyzing the individual trajectories and merging all individual results to obtain an upper bound. However, the multiple individuals composing the city are not totally independent and the individual behavior is heavily influenced by its implicit or explicit surroundings. Therefore, the collective factor should be considered in the mobility predictability measurement, which has not been addressed before. This vision paper points out this concern and envisions a few potential research problems along such an individual-to-collective transition from both data and methodology aspects. We hope the discussion in this paper sheds some light on the human mobility predictability community.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.