非克尔黑洞中的中微子振荡与量子现象

Husan Alibekov, Farruh Atamurotov, A. Abdujabbarov, Vokhid Khamidov
{"title":"非克尔黑洞中的中微子振荡与量子现象","authors":"Husan Alibekov, Farruh Atamurotov, A. Abdujabbarov, Vokhid Khamidov","doi":"10.1088/1674-1137/ad3c2c","DOIUrl":null,"url":null,"abstract":"\n In this paper, we have investigated the mathematical components of the Dirac equation in curved space-time and how it can be applied to the analysis of neutrino oscillations. More specifically, we have developed a method for calculating the phase shift in flavor neutrino oscillations by utilizing a Taylor series expansion of the action, taking into account $\\Delta m^4$ orders. In addition, we have used this method to assess how the phase difference in neutrino mass eigenstates changes due to the gravitational field described by the Johannsen spacetime.","PeriodicalId":504778,"journal":{"name":"Chinese Physics C","volume":"5 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutrino oscillations in the Non-Kerr black hole with quantum phenomenon\",\"authors\":\"Husan Alibekov, Farruh Atamurotov, A. Abdujabbarov, Vokhid Khamidov\",\"doi\":\"10.1088/1674-1137/ad3c2c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we have investigated the mathematical components of the Dirac equation in curved space-time and how it can be applied to the analysis of neutrino oscillations. More specifically, we have developed a method for calculating the phase shift in flavor neutrino oscillations by utilizing a Taylor series expansion of the action, taking into account $\\\\Delta m^4$ orders. In addition, we have used this method to assess how the phase difference in neutrino mass eigenstates changes due to the gravitational field described by the Johannsen spacetime.\",\"PeriodicalId\":504778,\"journal\":{\"name\":\"Chinese Physics C\",\"volume\":\"5 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1137/ad3c2c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad3c2c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了狄拉克方程在弯曲时空中的数学成分,以及如何将其应用于中微子振荡分析。更具体地说,考虑到 $\Delta m^4$ 阶数,我们开发了一种方法,利用作用的泰勒级数展开来计算味道中微子振荡的相移。此外,我们还用这种方法评估了中微子质量特征状态的相位差如何因约翰森时空描述的引力场而发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neutrino oscillations in the Non-Kerr black hole with quantum phenomenon
In this paper, we have investigated the mathematical components of the Dirac equation in curved space-time and how it can be applied to the analysis of neutrino oscillations. More specifically, we have developed a method for calculating the phase shift in flavor neutrino oscillations by utilizing a Taylor series expansion of the action, taking into account $\Delta m^4$ orders. In addition, we have used this method to assess how the phase difference in neutrino mass eigenstates changes due to the gravitational field described by the Johannsen spacetime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信