加权索波列夫空间中正交多项式的规范可达性和收敛性分析

Mogoi N. Evans, A. Wanjara, Samuel B. Apima
{"title":"加权索波列夫空间中正交多项式的规范可达性和收敛性分析","authors":"Mogoi N. Evans, A. Wanjara, Samuel B. Apima","doi":"10.9734/arjom/2024/v20i4792","DOIUrl":null,"url":null,"abstract":"This paper explores norm-attainability of orthogonal polynomials in Sobolev spaces, investigating properties like existence, uniqueness, and convergence. It establishes the convergence of these polynomials in Sobolev spaces, addressing orthogonality preservation and derivative behaviors. Spectral properties, including Sturm-Liouville eigenvalue problems, are analyzed, enhancing the understanding of these polynomials. The study incorporates fundamental concepts like reproducing kernels, Riesz representations, and Bessel’s inequality. Results contribute to the theoretical understanding of orthogonal polynomials, with potential applications in diverse mathematical and computational contexts.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"15 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Norm-Attainability and Convergence Properties of Orthogonal Polynomials in Weighted Sobolev Spaces\",\"authors\":\"Mogoi N. Evans, A. Wanjara, Samuel B. Apima\",\"doi\":\"10.9734/arjom/2024/v20i4792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores norm-attainability of orthogonal polynomials in Sobolev spaces, investigating properties like existence, uniqueness, and convergence. It establishes the convergence of these polynomials in Sobolev spaces, addressing orthogonality preservation and derivative behaviors. Spectral properties, including Sturm-Liouville eigenvalue problems, are analyzed, enhancing the understanding of these polynomials. The study incorporates fundamental concepts like reproducing kernels, Riesz representations, and Bessel’s inequality. Results contribute to the theoretical understanding of orthogonal polynomials, with potential applications in diverse mathematical and computational contexts.\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2024/v20i4792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2024/v20i4792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了 Sobolev 空间中正交多项式的规范可得性,研究了存在性、唯一性和收敛性等性质。它确定了这些多项式在 Sobolev 空间中的收敛性,解决了正交性保持和导数行为问题。还分析了光谱特性,包括 Sturm-Liouville 特征值问题,加深了对这些多项式的理解。研究结合了再现核、Riesz 表示和贝塞尔不等式等基本概念。研究结果有助于从理论上理解正交多项式,并有可能应用于各种数学和计算领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Norm-Attainability and Convergence Properties of Orthogonal Polynomials in Weighted Sobolev Spaces
This paper explores norm-attainability of orthogonal polynomials in Sobolev spaces, investigating properties like existence, uniqueness, and convergence. It establishes the convergence of these polynomials in Sobolev spaces, addressing orthogonality preservation and derivative behaviors. Spectral properties, including Sturm-Liouville eigenvalue problems, are analyzed, enhancing the understanding of these polynomials. The study incorporates fundamental concepts like reproducing kernels, Riesz representations, and Bessel’s inequality. Results contribute to the theoretical understanding of orthogonal polynomials, with potential applications in diverse mathematical and computational contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信