S. Atapoor, Karim Baghery, Hilder V. L. Pereira, Jannik Spiessens
{"title":"通过基于网格的 SNARKs 实现可验证的 FHE","authors":"S. Atapoor, Karim Baghery, Hilder V. L. Pereira, Jannik Spiessens","doi":"10.62056/a6ksdkp10","DOIUrl":null,"url":null,"abstract":"Fully Homomorphic Encryption (FHE) is a prevalent cryptographic primitive that allows for computation on encrypted data. In various cryptographic protocols, this enables outsourcing computation to a third party while retaining the privacy of the inputs to the computation. However, these schemes make an honest-but-curious assumption about the adversary. Previous work has tried to remove this assumption by combining FHE with Verifiable Computation (VC). Recent work has increased the flexibility of this approach by introducing integrity checks for homomorphic computations over rings. However, efficient FHE for circuits of large multiplicative depth also requires non-ring computations called maintenance operations, i.e. modswitching and keyswitching, which cannot be efficiently verified by existing constructions. We propose the first efficiently verifiable FHE scheme that allows for arbitrary depth homomorphic circuits by utilizing the double-CRT representation in which FHE schemes are typically computed, and using lattice-based SNARKs to prove components of this computation separately, including the maintenance operations. Therefore, our construction can theoretically handle bootstrapping operations. We also present the first implementation of a verifiable computation on encrypted data for a computation that contains multiple ciphertext-ciphertext multiplications. Concretely, we verify the homomorphic computation of an approximate neural network containing three layers and >100 ciphertexts in less than 1 second while maintaining reasonable prover costs.","PeriodicalId":508905,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"28 1","pages":"32"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Verifiable FHE via Lattice-based SNARKs\",\"authors\":\"S. Atapoor, Karim Baghery, Hilder V. L. Pereira, Jannik Spiessens\",\"doi\":\"10.62056/a6ksdkp10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully Homomorphic Encryption (FHE) is a prevalent cryptographic primitive that allows for computation on encrypted data. In various cryptographic protocols, this enables outsourcing computation to a third party while retaining the privacy of the inputs to the computation. However, these schemes make an honest-but-curious assumption about the adversary. Previous work has tried to remove this assumption by combining FHE with Verifiable Computation (VC). Recent work has increased the flexibility of this approach by introducing integrity checks for homomorphic computations over rings. However, efficient FHE for circuits of large multiplicative depth also requires non-ring computations called maintenance operations, i.e. modswitching and keyswitching, which cannot be efficiently verified by existing constructions. We propose the first efficiently verifiable FHE scheme that allows for arbitrary depth homomorphic circuits by utilizing the double-CRT representation in which FHE schemes are typically computed, and using lattice-based SNARKs to prove components of this computation separately, including the maintenance operations. Therefore, our construction can theoretically handle bootstrapping operations. We also present the first implementation of a verifiable computation on encrypted data for a computation that contains multiple ciphertext-ciphertext multiplications. Concretely, we verify the homomorphic computation of an approximate neural network containing three layers and >100 ciphertexts in less than 1 second while maintaining reasonable prover costs.\",\"PeriodicalId\":508905,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"28 1\",\"pages\":\"32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.62056/a6ksdkp10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62056/a6ksdkp10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fully Homomorphic Encryption (FHE) is a prevalent cryptographic primitive that allows for computation on encrypted data. In various cryptographic protocols, this enables outsourcing computation to a third party while retaining the privacy of the inputs to the computation. However, these schemes make an honest-but-curious assumption about the adversary. Previous work has tried to remove this assumption by combining FHE with Verifiable Computation (VC). Recent work has increased the flexibility of this approach by introducing integrity checks for homomorphic computations over rings. However, efficient FHE for circuits of large multiplicative depth also requires non-ring computations called maintenance operations, i.e. modswitching and keyswitching, which cannot be efficiently verified by existing constructions. We propose the first efficiently verifiable FHE scheme that allows for arbitrary depth homomorphic circuits by utilizing the double-CRT representation in which FHE schemes are typically computed, and using lattice-based SNARKs to prove components of this computation separately, including the maintenance operations. Therefore, our construction can theoretically handle bootstrapping operations. We also present the first implementation of a verifiable computation on encrypted data for a computation that contains multiple ciphertext-ciphertext multiplications. Concretely, we verify the homomorphic computation of an approximate neural network containing three layers and >100 ciphertexts in less than 1 second while maintaining reasonable prover costs.