从阿尔戈剖面反演到地表测高的涡流探测

Xiaoyan Chen, G. Quartly, Ge Chen
{"title":"从阿尔戈剖面反演到地表测高的涡流探测","authors":"Xiaoyan Chen, G. Quartly, Ge Chen","doi":"10.1175/jtech-d-22-0147.1","DOIUrl":null,"url":null,"abstract":"\nArgo floats are widely used to characterize vertical structures of ocean eddies, yet their capability to invert sea-surface features of eddies, especially those overlooked by available altimeters, has not been explored. In this paper, we propose an “interior-to-surface” inversion algorithm to effectively expand the capacity of eddy detection by estimating altimeter-missed eddies’ surface attributes from their Argo-derived potential density anomaly profiles, given that interior property and surface signature of eddies are highly correlated. An altimeter-calibrated machine learning ensemble is employed for the inversion training based on the joint altimeter-Argo eddy data and shows promising performance with mean absolute errors of 5.4 km, 0.5 cm, and 14.3 cm2/s2 for eddy radius, amplitude, and kinetic energy. Then, the trained ensemble model is applied to independently invert the properties of eddies captured by an Argo-alone detection scheme, which yields a high spatiotemporal consistency with their altimeter-captured counterparts. In particular, a portion of Argo-alone eddies is ~25% smaller than altimeter-derived ones, indicating Argo’s unique capability of profiling weaker submesoscale eddies. Sea surface temperature and chlorophyll data are further applied to validate the reliability of eddies identified and characterized by the Argo-only algorithm. This new methodology effectively complements that of altimetry in eddy detecting and can be expanded to estimate other physical/biochemical eddy variables from a variety of in-situ observations.","PeriodicalId":507668,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eddy detection inverted from Argo profiles to surface altimetry\",\"authors\":\"Xiaoyan Chen, G. Quartly, Ge Chen\",\"doi\":\"10.1175/jtech-d-22-0147.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nArgo floats are widely used to characterize vertical structures of ocean eddies, yet their capability to invert sea-surface features of eddies, especially those overlooked by available altimeters, has not been explored. In this paper, we propose an “interior-to-surface” inversion algorithm to effectively expand the capacity of eddy detection by estimating altimeter-missed eddies’ surface attributes from their Argo-derived potential density anomaly profiles, given that interior property and surface signature of eddies are highly correlated. An altimeter-calibrated machine learning ensemble is employed for the inversion training based on the joint altimeter-Argo eddy data and shows promising performance with mean absolute errors of 5.4 km, 0.5 cm, and 14.3 cm2/s2 for eddy radius, amplitude, and kinetic energy. Then, the trained ensemble model is applied to independently invert the properties of eddies captured by an Argo-alone detection scheme, which yields a high spatiotemporal consistency with their altimeter-captured counterparts. In particular, a portion of Argo-alone eddies is ~25% smaller than altimeter-derived ones, indicating Argo’s unique capability of profiling weaker submesoscale eddies. Sea surface temperature and chlorophyll data are further applied to validate the reliability of eddies identified and characterized by the Argo-only algorithm. This new methodology effectively complements that of altimetry in eddy detecting and can be expanded to estimate other physical/biochemical eddy variables from a variety of in-situ observations.\",\"PeriodicalId\":507668,\"journal\":{\"name\":\"Journal of Atmospheric and Oceanic Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Oceanic Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/jtech-d-22-0147.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jtech-d-22-0147.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Argo 浮漂被广泛用于描述海洋漩涡的垂直结构,但其反演漩涡海面特征的能力,尤其是现有高度计忽略的漩涡海面特征的能力,尚未得到探索。鉴于漩涡的内部属性和表面特征高度相关,本文提出了一种 "从内部到表面 "的反演算法,通过从 Argo 衍生的潜在密度异常剖面估计高度计忽略的漩涡表面属性,从而有效地扩大漩涡探测能力。基于高度计和 Argo 联合漩涡数据,采用高度计校准的机器学习集合进行反演训练,结果表明其性能良好,漩涡半径、振幅和动能的平均绝对误差分别为 5.4 公里、0.5 厘米和 14.3 平方厘米/秒2。然后,将训练有素的集合模型用于独立反演 Argo 独立探测方案捕捉到的涡的属性,结果与高度计捕捉到的对应涡在时空上高度一致。特别是,Argo 单独探测到的部分漩涡比高度计探测到的漩涡小 25%,这表明 Argo 具有剖析较弱次中尺度漩涡的独特能力。海面温度和叶绿素数据被进一步用于验证仅由 Argo 算法识别和描述的漩涡的可靠性。这一新方法有效地补充了测高法在漩涡探测方面的不足,并可扩展到根据各种现场观测数据估算其他物理/生化漩涡变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eddy detection inverted from Argo profiles to surface altimetry
Argo floats are widely used to characterize vertical structures of ocean eddies, yet their capability to invert sea-surface features of eddies, especially those overlooked by available altimeters, has not been explored. In this paper, we propose an “interior-to-surface” inversion algorithm to effectively expand the capacity of eddy detection by estimating altimeter-missed eddies’ surface attributes from their Argo-derived potential density anomaly profiles, given that interior property and surface signature of eddies are highly correlated. An altimeter-calibrated machine learning ensemble is employed for the inversion training based on the joint altimeter-Argo eddy data and shows promising performance with mean absolute errors of 5.4 km, 0.5 cm, and 14.3 cm2/s2 for eddy radius, amplitude, and kinetic energy. Then, the trained ensemble model is applied to independently invert the properties of eddies captured by an Argo-alone detection scheme, which yields a high spatiotemporal consistency with their altimeter-captured counterparts. In particular, a portion of Argo-alone eddies is ~25% smaller than altimeter-derived ones, indicating Argo’s unique capability of profiling weaker submesoscale eddies. Sea surface temperature and chlorophyll data are further applied to validate the reliability of eddies identified and characterized by the Argo-only algorithm. This new methodology effectively complements that of altimetry in eddy detecting and can be expanded to estimate other physical/biochemical eddy variables from a variety of in-situ observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信