了解二进制戈帕解码

D. Bernstein
{"title":"了解二进制戈帕解码","authors":"D. Bernstein","doi":"10.62056/angy4fe-3","DOIUrl":null,"url":null,"abstract":"This paper reviews, from bottom to top, a polynomial-time algorithm to correct \n \n t\n \n errors in classical binary Goppa codes defined by squarefree degree-\n \n t\n \n polynomials. The proof is factored through a proof of a simple Reed–Solomon decoder, and the algorithm is simpler than Patterson's algorithm. All algorithm layers are expressed as Sage scripts backed by test scripts. All theorems are formally verified. The paper also covers the use of decoding inside the Classic McEliece cryptosystem, including reliable recognition of valid inputs.","PeriodicalId":508905,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"21 1","pages":"473"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Understanding binary-Goppa decoding\",\"authors\":\"D. Bernstein\",\"doi\":\"10.62056/angy4fe-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reviews, from bottom to top, a polynomial-time algorithm to correct \\n \\n t\\n \\n errors in classical binary Goppa codes defined by squarefree degree-\\n \\n t\\n \\n polynomials. The proof is factored through a proof of a simple Reed–Solomon decoder, and the algorithm is simpler than Patterson's algorithm. All algorithm layers are expressed as Sage scripts backed by test scripts. All theorems are formally verified. The paper also covers the use of decoding inside the Classic McEliece cryptosystem, including reliable recognition of valid inputs.\",\"PeriodicalId\":508905,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"21 1\",\"pages\":\"473\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.62056/angy4fe-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62056/angy4fe-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文自下而上评述了一种多项式时间算法,用于纠正由无平方 t 度多项式定义的经典二进制 Goppa 码中的 t 错误。证明是通过一个简单的里德-所罗门解码器的证明来实现的,该算法比帕特森算法更简单。所有算法层都以 Sage 脚本表达,并有测试脚本支持。所有定理都经过正式验证。论文还涉及经典 McEliece 密码系统内部解码的使用,包括有效输入的可靠识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding binary-Goppa decoding
This paper reviews, from bottom to top, a polynomial-time algorithm to correct t errors in classical binary Goppa codes defined by squarefree degree- t polynomials. The proof is factored through a proof of a simple Reed–Solomon decoder, and the algorithm is simpler than Patterson's algorithm. All algorithm layers are expressed as Sage scripts backed by test scripts. All theorems are formally verified. The paper also covers the use of decoding inside the Classic McEliece cryptosystem, including reliable recognition of valid inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信