A. Nair, Viktoria Yavorska, A. Hykkerud, Harsha Ratnaweera
{"title":"基于云的基础设施,用于部署预测性混凝剂剂量控制的监督预测模型","authors":"A. Nair, Viktoria Yavorska, A. Hykkerud, Harsha Ratnaweera","doi":"10.2166/wpt.2024.091","DOIUrl":null,"url":null,"abstract":"\n Advanced optimal dosing control based on multiple online sensor data is operational in several treatment facilities in Norway. The benefits of the dosing control system in maintaining stable phosphate/solids removal and saving coagulant usage are documented in the literature. The dosing algorithm is currently implemented in a programmable logic controller (PLC) connected to the treatment plant's Supervisory Control and Data Acquisition System (SCADA) system. The PLC receives online sensor data from the plant's SCADA, calculates the optimal dosing values, and transmits optimal dosage values back to the SCADA system. The dosing algorithm is frequently updated to keep in sync with the process and equipment upgrades of the treatment plant and advances in control algorithm schemes. The upgrades include new regulatory feedback loops structural changes to the dose equation, and the addition of conditional setpoints. Each maintenance and upgrade routine entails operational downtime where the dosing algorithm is set to a sub-optimal flow-proportional dose. This paper presents a non-intrusive Internet of Things (IoT) infrastructure to implement a predictive/forecast component to an existing dosing control algorithm. The benefits of the new cloud-based system in improving nutrient removal, increasing operational flexibility, and reducing maintenance downtime are presented in this work.","PeriodicalId":104096,"journal":{"name":"Water Practice & Technology","volume":"142 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cloud-based infrastructure to deploy supervisory forecast models for predictive coagulant dosing control\",\"authors\":\"A. Nair, Viktoria Yavorska, A. Hykkerud, Harsha Ratnaweera\",\"doi\":\"10.2166/wpt.2024.091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Advanced optimal dosing control based on multiple online sensor data is operational in several treatment facilities in Norway. The benefits of the dosing control system in maintaining stable phosphate/solids removal and saving coagulant usage are documented in the literature. The dosing algorithm is currently implemented in a programmable logic controller (PLC) connected to the treatment plant's Supervisory Control and Data Acquisition System (SCADA) system. The PLC receives online sensor data from the plant's SCADA, calculates the optimal dosing values, and transmits optimal dosage values back to the SCADA system. The dosing algorithm is frequently updated to keep in sync with the process and equipment upgrades of the treatment plant and advances in control algorithm schemes. The upgrades include new regulatory feedback loops structural changes to the dose equation, and the addition of conditional setpoints. Each maintenance and upgrade routine entails operational downtime where the dosing algorithm is set to a sub-optimal flow-proportional dose. This paper presents a non-intrusive Internet of Things (IoT) infrastructure to implement a predictive/forecast component to an existing dosing control algorithm. The benefits of the new cloud-based system in improving nutrient removal, increasing operational flexibility, and reducing maintenance downtime are presented in this work.\",\"PeriodicalId\":104096,\"journal\":{\"name\":\"Water Practice & Technology\",\"volume\":\"142 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Practice & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wpt.2024.091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Practice & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wpt.2024.091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A cloud-based infrastructure to deploy supervisory forecast models for predictive coagulant dosing control
Advanced optimal dosing control based on multiple online sensor data is operational in several treatment facilities in Norway. The benefits of the dosing control system in maintaining stable phosphate/solids removal and saving coagulant usage are documented in the literature. The dosing algorithm is currently implemented in a programmable logic controller (PLC) connected to the treatment plant's Supervisory Control and Data Acquisition System (SCADA) system. The PLC receives online sensor data from the plant's SCADA, calculates the optimal dosing values, and transmits optimal dosage values back to the SCADA system. The dosing algorithm is frequently updated to keep in sync with the process and equipment upgrades of the treatment plant and advances in control algorithm schemes. The upgrades include new regulatory feedback loops structural changes to the dose equation, and the addition of conditional setpoints. Each maintenance and upgrade routine entails operational downtime where the dosing algorithm is set to a sub-optimal flow-proportional dose. This paper presents a non-intrusive Internet of Things (IoT) infrastructure to implement a predictive/forecast component to an existing dosing control algorithm. The benefits of the new cloud-based system in improving nutrient removal, increasing operational flexibility, and reducing maintenance downtime are presented in this work.