索波列夫空间和曲面上函数空间分析的进展:理论框架与应用

Mogoi N. Evans, Samuel B. Apima, A. Wanjara
{"title":"索波列夫空间和曲面上函数空间分析的进展:理论框架与应用","authors":"Mogoi N. Evans, Samuel B. Apima, A. Wanjara","doi":"10.9734/air/2024/v25i31060","DOIUrl":null,"url":null,"abstract":"This research paper delves into Sobolev spaces and function spaces on smooth manifolds, revealing fundamental theorems such as existence, embeddings, and compactness properties. Noteworthy results include the Poincare inequality elucidating function behavior on compact manifolds and compactness properties of Sobolev spaces on Riemannian manifolds. The study establishes trace theorems for functions on the boundary and interpolation results between Sobolev spaces. Isoperimetric inequalities and stability under weak convergence contribute to a holistic understanding of geometric and analytical aspects of Sobolev spaces. The research concludes by exploring invariance under diffeomorphisms and compactness in dual spaces, providing a unified framework for analyzing function spaces on manifolds.","PeriodicalId":91191,"journal":{"name":"Advances in research","volume":"1996 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in the Analysis of Sobolev Spaces and Function Spaces on Manifolds: Theoretical Framework and Applications\",\"authors\":\"Mogoi N. Evans, Samuel B. Apima, A. Wanjara\",\"doi\":\"10.9734/air/2024/v25i31060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper delves into Sobolev spaces and function spaces on smooth manifolds, revealing fundamental theorems such as existence, embeddings, and compactness properties. Noteworthy results include the Poincare inequality elucidating function behavior on compact manifolds and compactness properties of Sobolev spaces on Riemannian manifolds. The study establishes trace theorems for functions on the boundary and interpolation results between Sobolev spaces. Isoperimetric inequalities and stability under weak convergence contribute to a holistic understanding of geometric and analytical aspects of Sobolev spaces. The research concludes by exploring invariance under diffeomorphisms and compactness in dual spaces, providing a unified framework for analyzing function spaces on manifolds.\",\"PeriodicalId\":91191,\"journal\":{\"name\":\"Advances in research\",\"volume\":\"1996 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/air/2024/v25i31060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/air/2024/v25i31060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇研究论文深入探讨了光滑流形上的索波列夫空间和函数空间,揭示了存在、嵌入和紧凑性等基本定理。值得注意的结果包括阐明紧凑流形上函数行为的泊恩卡不等式,以及黎曼流形上索伯列夫空间的紧凑性特性。研究建立了边界上函数的迹定理和 Sobolev 空间之间的插值结果。等周不等式和弱收敛下的稳定性有助于全面了解 Sobolev 空间的几何和分析方面。研究最后探讨了差分变形下的不变性和对偶空间的紧凑性,为分析流形上的函数空间提供了一个统一的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancements in the Analysis of Sobolev Spaces and Function Spaces on Manifolds: Theoretical Framework and Applications
This research paper delves into Sobolev spaces and function spaces on smooth manifolds, revealing fundamental theorems such as existence, embeddings, and compactness properties. Noteworthy results include the Poincare inequality elucidating function behavior on compact manifolds and compactness properties of Sobolev spaces on Riemannian manifolds. The study establishes trace theorems for functions on the boundary and interpolation results between Sobolev spaces. Isoperimetric inequalities and stability under weak convergence contribute to a holistic understanding of geometric and analytical aspects of Sobolev spaces. The research concludes by exploring invariance under diffeomorphisms and compactness in dual spaces, providing a unified framework for analyzing function spaces on manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信