利用人工神经网络进行入境车辆空气动力特性分析

Zachary J. Ernst, Bradford Robertson, Dimitri Mavris
{"title":"利用人工神经网络进行入境车辆空气动力特性分析","authors":"Zachary J. Ernst, Bradford Robertson, Dimitri Mavris","doi":"10.2514/1.a35737","DOIUrl":null,"url":null,"abstract":"Determining the dynamic stability of blunt body entry vehicles is a persistent engineering challenge, particularly in the low supersonic to subsonic flight regime where the behavior of the unsteady wake is a primary contributor. Dynamic stability quantities are determined by fitting measurements of a ballistic range campaign or a computational fluid dynamics (CFD) computational experiment to an assumed functional form in order to regress quasi-static stability coefficients. However, this data reduction process has many implicit assumptions that may not hold. This paper explores novel alternatives to the established methods for modeling blunt body aerodynamics. A six-degree-of-freedom CFD-in-the-loop flight model is used to run “virtual ballistic range tests,” fully capturing the relevant flow physics. Feed-forward and time-delay neural network models are fitted to the time-series trajectory and aerodynamic results, which can then be used to predict aerodynamic forces and moments. These models do not have a prescribed functional form and do not assume linearized aerodynamics. The models are evaluated for goodness-of-fit in their aerodynamic and trajectory prediction. The feed-forward neural network model resulted in a better prediction of the virtual ballistic range tests than a traditional database. The time-delay network had good open-loop performance but suffered from closed-loop instability.","PeriodicalId":508266,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"2000 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Artificial Neural Networks for Entry Vehicle Aerodynamic Characterization\",\"authors\":\"Zachary J. Ernst, Bradford Robertson, Dimitri Mavris\",\"doi\":\"10.2514/1.a35737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the dynamic stability of blunt body entry vehicles is a persistent engineering challenge, particularly in the low supersonic to subsonic flight regime where the behavior of the unsteady wake is a primary contributor. Dynamic stability quantities are determined by fitting measurements of a ballistic range campaign or a computational fluid dynamics (CFD) computational experiment to an assumed functional form in order to regress quasi-static stability coefficients. However, this data reduction process has many implicit assumptions that may not hold. This paper explores novel alternatives to the established methods for modeling blunt body aerodynamics. A six-degree-of-freedom CFD-in-the-loop flight model is used to run “virtual ballistic range tests,” fully capturing the relevant flow physics. Feed-forward and time-delay neural network models are fitted to the time-series trajectory and aerodynamic results, which can then be used to predict aerodynamic forces and moments. These models do not have a prescribed functional form and do not assume linearized aerodynamics. The models are evaluated for goodness-of-fit in their aerodynamic and trajectory prediction. The feed-forward neural network model resulted in a better prediction of the virtual ballistic range tests than a traditional database. The time-delay network had good open-loop performance but suffered from closed-loop instability.\",\"PeriodicalId\":508266,\"journal\":{\"name\":\"Journal of Spacecraft and Rockets\",\"volume\":\"2000 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spacecraft and Rockets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.a35737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.a35737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定钝体飞行器的动态稳定性是一项长期的工程挑战,特别是在低超音速到亚音速飞行状态下,不稳定尾流的行为是主要的影响因素。动态稳定性量是通过将弹道测距活动或计算流体动力学(CFD)计算实验的测量结果与假定的函数形式进行拟合,以回归准静态稳定性系数来确定的。然而,这种数据还原过程有许多可能不成立的隐含假设。本文探讨了钝体空气动力学建模既定方法的新型替代方法。采用六自由度 CFD 在环飞行模型进行 "虚拟弹道范围测试",充分捕捉相关的流动物理特性。前馈和时延神经网络模型适用于时间序列轨迹和空气动力学结果,然后可用于预测空气动力和力矩。这些模型没有规定的函数形式,也不假定空气动力学线性化。对这些模型的空气动力学和轨迹预测拟合度进行了评估。与传统数据库相比,前馈神经网络模型对虚拟弹道测试的预测效果更好。延时网络具有良好的开环性能,但存在闭环不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Artificial Neural Networks for Entry Vehicle Aerodynamic Characterization
Determining the dynamic stability of blunt body entry vehicles is a persistent engineering challenge, particularly in the low supersonic to subsonic flight regime where the behavior of the unsteady wake is a primary contributor. Dynamic stability quantities are determined by fitting measurements of a ballistic range campaign or a computational fluid dynamics (CFD) computational experiment to an assumed functional form in order to regress quasi-static stability coefficients. However, this data reduction process has many implicit assumptions that may not hold. This paper explores novel alternatives to the established methods for modeling blunt body aerodynamics. A six-degree-of-freedom CFD-in-the-loop flight model is used to run “virtual ballistic range tests,” fully capturing the relevant flow physics. Feed-forward and time-delay neural network models are fitted to the time-series trajectory and aerodynamic results, which can then be used to predict aerodynamic forces and moments. These models do not have a prescribed functional form and do not assume linearized aerodynamics. The models are evaluated for goodness-of-fit in their aerodynamic and trajectory prediction. The feed-forward neural network model resulted in a better prediction of the virtual ballistic range tests than a traditional database. The time-delay network had good open-loop performance but suffered from closed-loop instability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信