极坐标中的 SO(2,2) 表示和 Pöschl-Teller 势

M. C. Blazquez, Javier Negro
{"title":"极坐标中的 SO(2,2) 表示和 Pöschl-Teller 势","authors":"M. C. Blazquez, Javier Negro","doi":"10.1088/1751-8121/ad3d45","DOIUrl":null,"url":null,"abstract":"\n This work is devoted to show the interest of polar coordinates in the description of some unitary irreducible representations (or uir’s) of the SO(2, 2) group where the support space are functions on the three dimensional pseudosphere H2,2R . We will show that the differential equations associated to such uir’s can be interpreted as quantum systems including centrifugal terms; in our case these equations lead to one-dimensional Pöschl-Teller systems. The solutions to these equations are computed and the uir’s are characterized in terms of polar coordinates. We will also discuss briefly the more standard pseudospherical coordinates on H2,2R in order to appreciate some of the differences. We will consider as well the (maximally superintegrable) free classical systems defined on the real pseudosphere H2,2R symmetric under SO(2, 2). The constans of motion are found and they are applied to find some bounded (therefore periodic) and unbounded orbits also in terms of polar coordinates.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SO(2,2) representations in polar coordinates and Pöschl-Teller potentials\",\"authors\":\"M. C. Blazquez, Javier Negro\",\"doi\":\"10.1088/1751-8121/ad3d45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work is devoted to show the interest of polar coordinates in the description of some unitary irreducible representations (or uir’s) of the SO(2, 2) group where the support space are functions on the three dimensional pseudosphere H2,2R . We will show that the differential equations associated to such uir’s can be interpreted as quantum systems including centrifugal terms; in our case these equations lead to one-dimensional Pöschl-Teller systems. The solutions to these equations are computed and the uir’s are characterized in terms of polar coordinates. We will also discuss briefly the more standard pseudospherical coordinates on H2,2R in order to appreciate some of the differences. We will consider as well the (maximally superintegrable) free classical systems defined on the real pseudosphere H2,2R symmetric under SO(2, 2). The constans of motion are found and they are applied to find some bounded (therefore periodic) and unbounded orbits also in terms of polar coordinates.\",\"PeriodicalId\":502730,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad3d45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad3d45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作致力于展示极坐标在描述 SO(2, 2) 群的某些单元不可还原表示(或 uir's)中的作用,其中支持空间是三维伪球 H2,2R 上的函数。我们将证明,与这种uir相关联的二阶量子方程可以解释为包含离心项的量子系统;在我们的例子中,这些方程导致一维波氏-泰勒系统。我们计算了这些方程的解,并用极坐标描述了 uir 的特征。我们还将简要讨论 H2,2R 上更标准的假球坐标,以了解其中的一些差异。我们还将考虑在 SO(2, 2) 下对称的实假球 H2,2R 上定义的(最大超稳定)自由经典系统。我们找到了运动常量,并将其应用于根据极坐标找出一些有界(因此是周期性的)和无界轨道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SO(2,2) representations in polar coordinates and Pöschl-Teller potentials
This work is devoted to show the interest of polar coordinates in the description of some unitary irreducible representations (or uir’s) of the SO(2, 2) group where the support space are functions on the three dimensional pseudosphere H2,2R . We will show that the differential equations associated to such uir’s can be interpreted as quantum systems including centrifugal terms; in our case these equations lead to one-dimensional Pöschl-Teller systems. The solutions to these equations are computed and the uir’s are characterized in terms of polar coordinates. We will also discuss briefly the more standard pseudospherical coordinates on H2,2R in order to appreciate some of the differences. We will consider as well the (maximally superintegrable) free classical systems defined on the real pseudosphere H2,2R symmetric under SO(2, 2). The constans of motion are found and they are applied to find some bounded (therefore periodic) and unbounded orbits also in terms of polar coordinates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信