{"title":"数字孪生中的数据驱动建模用于电力系统异常检测","authors":"Xin Shi, Fang Fang, Robert Qiu","doi":"10.12688/digitaltwin.17734.1","DOIUrl":null,"url":null,"abstract":"Background: Power system anomaly detection is of great significance for realizing system situation awareness and early detection of system operating risks. In view of the complex operating conditions of the system, there are a large number of opaque links in the mechanism, and the anomaly detection approach based on physical mechanism modeling is prone to system errors due to assumptions, simplification, and transfer in the modeling process. This paper focuses on digital twin based data-driven approaches for power system anomaly detection to compensate for the limitation of physical methods in dynamical modeling. Methods: First of all, a digital twin framework for power system real-time analysis is constructed based on the concept of digital twin. Then, this paper conducts researches on the core of the designed framework, i.e., digital twin modeling. Considering the complexity of power system operating conditions, data-driven modeling is preferred and a random matrix and free probability theory based model for anomaly detection of system operating situation is constructed. Results: Simulation data with different spatiotemporal structure generated through a Monte Carlo experiment verified the sensitivity of the constructed model for data correlations. Meanwhile, the case on the system operating data generated through the IEEE 118-bus system validate the effectiveness of the proposed model for the system anomaly detection. Conclusions: The constructed data-driven model can accurately characterize the correlations among data elements, has good sensitivity to the variation of data spatial and temporal correlations, and can depict the data residuals better than the M-P law curve, which indicates the practicability and necessity of the constructed data-driven model for the digital twin modeling of power system anomaly detection.","PeriodicalId":29831,"journal":{"name":"Digital Twin","volume":"11 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven modeling in digital twin for power system anomaly detection\",\"authors\":\"Xin Shi, Fang Fang, Robert Qiu\",\"doi\":\"10.12688/digitaltwin.17734.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Power system anomaly detection is of great significance for realizing system situation awareness and early detection of system operating risks. In view of the complex operating conditions of the system, there are a large number of opaque links in the mechanism, and the anomaly detection approach based on physical mechanism modeling is prone to system errors due to assumptions, simplification, and transfer in the modeling process. This paper focuses on digital twin based data-driven approaches for power system anomaly detection to compensate for the limitation of physical methods in dynamical modeling. Methods: First of all, a digital twin framework for power system real-time analysis is constructed based on the concept of digital twin. Then, this paper conducts researches on the core of the designed framework, i.e., digital twin modeling. Considering the complexity of power system operating conditions, data-driven modeling is preferred and a random matrix and free probability theory based model for anomaly detection of system operating situation is constructed. Results: Simulation data with different spatiotemporal structure generated through a Monte Carlo experiment verified the sensitivity of the constructed model for data correlations. Meanwhile, the case on the system operating data generated through the IEEE 118-bus system validate the effectiveness of the proposed model for the system anomaly detection. Conclusions: The constructed data-driven model can accurately characterize the correlations among data elements, has good sensitivity to the variation of data spatial and temporal correlations, and can depict the data residuals better than the M-P law curve, which indicates the practicability and necessity of the constructed data-driven model for the digital twin modeling of power system anomaly detection.\",\"PeriodicalId\":29831,\"journal\":{\"name\":\"Digital Twin\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Twin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/digitaltwin.17734.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Twin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/digitaltwin.17734.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-driven modeling in digital twin for power system anomaly detection
Background: Power system anomaly detection is of great significance for realizing system situation awareness and early detection of system operating risks. In view of the complex operating conditions of the system, there are a large number of opaque links in the mechanism, and the anomaly detection approach based on physical mechanism modeling is prone to system errors due to assumptions, simplification, and transfer in the modeling process. This paper focuses on digital twin based data-driven approaches for power system anomaly detection to compensate for the limitation of physical methods in dynamical modeling. Methods: First of all, a digital twin framework for power system real-time analysis is constructed based on the concept of digital twin. Then, this paper conducts researches on the core of the designed framework, i.e., digital twin modeling. Considering the complexity of power system operating conditions, data-driven modeling is preferred and a random matrix and free probability theory based model for anomaly detection of system operating situation is constructed. Results: Simulation data with different spatiotemporal structure generated through a Monte Carlo experiment verified the sensitivity of the constructed model for data correlations. Meanwhile, the case on the system operating data generated through the IEEE 118-bus system validate the effectiveness of the proposed model for the system anomaly detection. Conclusions: The constructed data-driven model can accurately characterize the correlations among data elements, has good sensitivity to the variation of data spatial and temporal correlations, and can depict the data residuals better than the M-P law curve, which indicates the practicability and necessity of the constructed data-driven model for the digital twin modeling of power system anomaly detection.
期刊介绍:
Digital Twin is a rapid multidisciplinary open access publishing platform for state-of-the-art, basic, scientific and applied research on digital twin technologies. Digital Twin covers all areas related digital twin technologies, including broad fields such as smart manufacturing, civil and industrial engineering, healthcare, agriculture, and many others. The platform is open to submissions from researchers, practitioners and experts, and all articles will benefit from open peer review.
The aim of Digital Twin is to advance the state-of-the-art in digital twin research and encourage innovation by highlighting efficient, robust and sustainable multidisciplinary applications across a variety of fields. Challenges can be addressed using theoretical, methodological, and technological approaches.
The scope of Digital Twin includes, but is not limited to, the following areas:
● Digital twin concepts, architecture, and frameworks
● Digital twin theory and method
● Digital twin key technologies and tools
● Digital twin applications and case studies
● Digital twin implementation
● Digital twin services
● Digital twin security
● Digital twin standards
Digital twin also focuses on applications within and across broad sectors including:
● Smart manufacturing
● Aviation and aerospace
● Smart cities and construction
● Healthcare and medicine
● Robotics
● Shipping, vehicles and railways
● Industrial engineering and engineering management
● Agriculture
● Mining
● Power, energy and environment
Digital Twin features a range of article types including research articles, case studies, method articles, study protocols, software tools, systematic reviews, data notes, brief reports, and opinion articles.