测试纵向网络的相似性:个体网络不变性测试。

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Ria H A Hoekstra, S. Epskamp, Andrew A. Nierenberg, D. Borsboom, Richard J. McNally
{"title":"测试纵向网络的相似性:个体网络不变性测试。","authors":"Ria H A Hoekstra, S. Epskamp, Andrew A. Nierenberg, D. Borsboom, Richard J. McNally","doi":"10.1037/met0000638","DOIUrl":null,"url":null,"abstract":"The comparison of idiographic network structures to determine the presence of heterogeneity is a challenging endeavor in many applied settings. Previously, researchers eyeballed idiographic networks, computed correlations, and used techniques that make use of the multilevel structure of the data (e.g., group iterative multiple model estimation and multilevel vector autoregressive) to investigate individual differences. However, these methods do not allow for testing the (in)equality of idiographic network structures directly. In this article, we propose the Individual Network Invariance Test (INIT), which we implemented in the R package INIT. INIT extends common model comparison practices in structural equation modeling to idiographic network structures to test for (in)equality between idiographic networks. In a simulation study, we evaluated the performance of INIT on both saturated and pruned idiographic network structures by inspecting the rejection rate of the χ² difference test and model selection criteria, such as the Akaike information criterion (AIC) and Bayesian information criterion (BIC). Results show INIT performs adequately when t = 100 per individual. When applying INIT on saturated networks, the AIC performed best as a model selection criterion, while the BIC showed better results when applying INIT on pruned networks. In an empirical example, we highlight the possibilities of this new technique, illustrating how INIT provides researchers with a means of testing for (in)equality between idiographic network structures and within idiographic network structures over time. To conclude, recommendations for empirical researchers are provided. (PsycInfo Database Record (c) 2024 APA, all rights reserved).","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Testing similarity in longitudinal networks: The Individual Network Invariance Test.\",\"authors\":\"Ria H A Hoekstra, S. Epskamp, Andrew A. Nierenberg, D. Borsboom, Richard J. McNally\",\"doi\":\"10.1037/met0000638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The comparison of idiographic network structures to determine the presence of heterogeneity is a challenging endeavor in many applied settings. Previously, researchers eyeballed idiographic networks, computed correlations, and used techniques that make use of the multilevel structure of the data (e.g., group iterative multiple model estimation and multilevel vector autoregressive) to investigate individual differences. However, these methods do not allow for testing the (in)equality of idiographic network structures directly. In this article, we propose the Individual Network Invariance Test (INIT), which we implemented in the R package INIT. INIT extends common model comparison practices in structural equation modeling to idiographic network structures to test for (in)equality between idiographic networks. In a simulation study, we evaluated the performance of INIT on both saturated and pruned idiographic network structures by inspecting the rejection rate of the χ² difference test and model selection criteria, such as the Akaike information criterion (AIC) and Bayesian information criterion (BIC). Results show INIT performs adequately when t = 100 per individual. When applying INIT on saturated networks, the AIC performed best as a model selection criterion, while the BIC showed better results when applying INIT on pruned networks. In an empirical example, we highlight the possibilities of this new technique, illustrating how INIT provides researchers with a means of testing for (in)equality between idiographic network structures and within idiographic network structures over time. To conclude, recommendations for empirical researchers are provided. (PsycInfo Database Record (c) 2024 APA, all rights reserved).\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000638\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000638","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

在许多应用环境中,比较特异性网络结构以确定是否存在异质性是一项具有挑战性的工作。在此之前,研究人员会对特异性网络进行目测、计算相关性,并利用数据的多层次结构技术(如群体迭代多重模型估计和多层次向量自回归)来研究个体差异。然而,这些方法无法直接检验特异性网络结构的(不)平等性。在本文中,我们提出了个体网络不变性检验(INIT),并在 R 软件包 INIT 中实现。INIT 将结构方程建模中常见的模型比较方法扩展到了特异性网络结构,以检验特异性网络之间的(不)相等性。在一项模拟研究中,我们通过检测χ²差异检验的拒绝率和模型选择标准(如阿凯克信息准则(AIC)和贝叶斯信息准则(BIC)),评估了 INIT 在饱和和剪枝特异性网络结构上的性能。结果表明,当每个个体的 t = 100 时,INIT 能充分发挥作用。在饱和网络中应用 INIT 时,AIC 作为模型选择标准表现最佳,而在剪枝网络中应用 INIT 时,BIC 则显示出更好的效果。在一个实证例子中,我们强调了这一新技术的可能性,说明了 INIT 如何为研究人员提供了一种方法,用于检验随着时间的推移,特异性网络结构之间以及特异性网络结构内部是否(不)平等。最后,我们为实证研究人员提出了建议。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing similarity in longitudinal networks: The Individual Network Invariance Test.
The comparison of idiographic network structures to determine the presence of heterogeneity is a challenging endeavor in many applied settings. Previously, researchers eyeballed idiographic networks, computed correlations, and used techniques that make use of the multilevel structure of the data (e.g., group iterative multiple model estimation and multilevel vector autoregressive) to investigate individual differences. However, these methods do not allow for testing the (in)equality of idiographic network structures directly. In this article, we propose the Individual Network Invariance Test (INIT), which we implemented in the R package INIT. INIT extends common model comparison practices in structural equation modeling to idiographic network structures to test for (in)equality between idiographic networks. In a simulation study, we evaluated the performance of INIT on both saturated and pruned idiographic network structures by inspecting the rejection rate of the χ² difference test and model selection criteria, such as the Akaike information criterion (AIC) and Bayesian information criterion (BIC). Results show INIT performs adequately when t = 100 per individual. When applying INIT on saturated networks, the AIC performed best as a model selection criterion, while the BIC showed better results when applying INIT on pruned networks. In an empirical example, we highlight the possibilities of this new technique, illustrating how INIT provides researchers with a means of testing for (in)equality between idiographic network structures and within idiographic network structures over time. To conclude, recommendations for empirical researchers are provided. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信