多重正交多项式、矩形正交多项式、生产矩阵和支化连续分数

Alan Sokal
{"title":"多重正交多项式、矩形正交多项式、生产矩阵和支化连续分数","authors":"Alan Sokal","doi":"10.1090/btran/133","DOIUrl":null,"url":null,"abstract":"I analyze an unexpected connection between multiple orthogonal polynomials, \n\n \n d\n d\n \n\n-orthogonal polynomials, production matrices and branched continued fractions. This work can be viewed as a partial extension of Viennot’s combinatorial theory of orthogonal polynomials to the case where the production matrix is lower-Hessenberg but is not necessarily tridiagonal.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"31 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple orthogonal polynomials, 𝑑-orthogonal polynomials, production matrices, and branched continued fractions\",\"authors\":\"Alan Sokal\",\"doi\":\"10.1090/btran/133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I analyze an unexpected connection between multiple orthogonal polynomials, \\n\\n \\n d\\n d\\n \\n\\n-orthogonal polynomials, production matrices and branched continued fractions. This work can be viewed as a partial extension of Viennot’s combinatorial theory of orthogonal polynomials to the case where the production matrix is lower-Hessenberg but is not necessarily tridiagonal.\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"31 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我分析了多重正交多项式、d d 正交多项式、生成矩阵和支化续分之间意想不到的联系。这项工作可以看作是 Viennot 正交多项式组合理论的部分延伸,它适用于生成矩阵是下海森堡矩阵但不一定是三对角矩阵的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple orthogonal polynomials, 𝑑-orthogonal polynomials, production matrices, and branched continued fractions
I analyze an unexpected connection between multiple orthogonal polynomials, d d -orthogonal polynomials, production matrices and branched continued fractions. This work can be viewed as a partial extension of Viennot’s combinatorial theory of orthogonal polynomials to the case where the production matrix is lower-Hessenberg but is not necessarily tridiagonal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信