通过元基因组组装基因组和碳水化合物降解基因探索蓝塘猪肠道微生物群落

Jianbo Yang, Ying Fan, Rui Jin, Yunjuan Peng, Jianmin Chai, Xiaoyuan Wei, Yunxiang Zhao, Feilong Deng, Jiangchao Zhao, Ying Li
{"title":"通过元基因组组装基因组和碳水化合物降解基因探索蓝塘猪肠道微生物群落","authors":"Jianbo Yang, Ying Fan, Rui Jin, Yunjuan Peng, Jianmin Chai, Xiaoyuan Wei, Yunxiang Zhao, Feilong Deng, Jiangchao Zhao, Ying Li","doi":"10.3390/fermentation10040207","DOIUrl":null,"url":null,"abstract":"High-fiber, low-cost agricultural byproducts offer a sustainable alternative for mitigating the competition for crops between humans and livestock. Pigs predominantly utilize dietary fibers through the process of microbial fermentation within the gut. This study explored the gut microbiota and the capacity for carbohydrate degradation in 30 individual Lantang pigs, a breed indigenous to China. Through metagenomic analysis, a total of 671 metagenome-assembled genomes (MAGs) were assembled and assigned into 14 bacterial and 1 archaeal phylum, including 97 species from uncultured microbes. The phylum with the highest abundance were identified as Bacillota_A, Bacteroidota, and Bacillota. Remarkably, the investigation revealed nearly 10,000 genes implicated in the degradation of carbohydrates, with a pronounced prevalence within five principal bacterial genera: Prevotella, Cryptobacteroides, Gemmiger, Vescimonas, and Faecousia. Additionally, 87 distinct types of carbohydrate-degrading enzymes were exclusively identified within the gut microbiota of the Lantang pig. These insights not only enhance our understanding of the microbial diversity specific to native Chinese pig breeds but also augment the body of research regarding porcine fiber degradation capabilities. The implications of this study are twofold: it provides strategic directions for optimizing feed efficiency and reducing breeding costs, and it furnishes an expanded gene pool for the microbial synthesis of industrial enzymes in the future.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"31 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Intestinal Microbial Community of Lantang Pigs through Metagenome-Assembled Genomes and Carbohydrate Degradation Genes\",\"authors\":\"Jianbo Yang, Ying Fan, Rui Jin, Yunjuan Peng, Jianmin Chai, Xiaoyuan Wei, Yunxiang Zhao, Feilong Deng, Jiangchao Zhao, Ying Li\",\"doi\":\"10.3390/fermentation10040207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-fiber, low-cost agricultural byproducts offer a sustainable alternative for mitigating the competition for crops between humans and livestock. Pigs predominantly utilize dietary fibers through the process of microbial fermentation within the gut. This study explored the gut microbiota and the capacity for carbohydrate degradation in 30 individual Lantang pigs, a breed indigenous to China. Through metagenomic analysis, a total of 671 metagenome-assembled genomes (MAGs) were assembled and assigned into 14 bacterial and 1 archaeal phylum, including 97 species from uncultured microbes. The phylum with the highest abundance were identified as Bacillota_A, Bacteroidota, and Bacillota. Remarkably, the investigation revealed nearly 10,000 genes implicated in the degradation of carbohydrates, with a pronounced prevalence within five principal bacterial genera: Prevotella, Cryptobacteroides, Gemmiger, Vescimonas, and Faecousia. Additionally, 87 distinct types of carbohydrate-degrading enzymes were exclusively identified within the gut microbiota of the Lantang pig. These insights not only enhance our understanding of the microbial diversity specific to native Chinese pig breeds but also augment the body of research regarding porcine fiber degradation capabilities. The implications of this study are twofold: it provides strategic directions for optimizing feed efficiency and reducing breeding costs, and it furnishes an expanded gene pool for the microbial synthesis of industrial enzymes in the future.\",\"PeriodicalId\":507249,\"journal\":{\"name\":\"Fermentation\",\"volume\":\"31 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation10040207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10040207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高纤维、低成本的农副产品为缓解人类和牲畜对农作物的争夺提供了一种可持续的选择。猪主要通过肠道内的微生物发酵过程利用膳食纤维。本研究探讨了 30 头兰塘猪(中国土生土长的猪种)的肠道微生物群和碳水化合物降解能力。通过元基因组分析,共组装了 671 个元基因组,并将其归入 14 个细菌门和 1 个古细菌门,其中包括 97 个来自未培养微生物的物种。丰度最高的门类被确定为杆菌门(Bacillota_A)、类杆菌门(Bacteroidota)和芽孢杆菌门(Bacillota)。值得注意的是,调查发现了近 10,000 个与碳水化合物降解有关的基因,这些基因在五个主要细菌属中非常普遍:其中 Prevotella、Cryptobacteroides、Gemmiger、Vescimonas 和 Faecousia 五个主要细菌属中的基因数量较多。此外,在蓝塘猪的肠道微生物群中还专门发现了 87 种不同类型的碳水化合物降解酶。这些发现不仅加深了我们对中国本土猪种特有的微生物多样性的了解,而且丰富了有关猪纤维降解能力的研究。这项研究具有双重意义:它为优化饲料效率和降低养殖成本提供了战略方向,并为未来工业酶的微生物合成提供了更大的基因库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Intestinal Microbial Community of Lantang Pigs through Metagenome-Assembled Genomes and Carbohydrate Degradation Genes
High-fiber, low-cost agricultural byproducts offer a sustainable alternative for mitigating the competition for crops between humans and livestock. Pigs predominantly utilize dietary fibers through the process of microbial fermentation within the gut. This study explored the gut microbiota and the capacity for carbohydrate degradation in 30 individual Lantang pigs, a breed indigenous to China. Through metagenomic analysis, a total of 671 metagenome-assembled genomes (MAGs) were assembled and assigned into 14 bacterial and 1 archaeal phylum, including 97 species from uncultured microbes. The phylum with the highest abundance were identified as Bacillota_A, Bacteroidota, and Bacillota. Remarkably, the investigation revealed nearly 10,000 genes implicated in the degradation of carbohydrates, with a pronounced prevalence within five principal bacterial genera: Prevotella, Cryptobacteroides, Gemmiger, Vescimonas, and Faecousia. Additionally, 87 distinct types of carbohydrate-degrading enzymes were exclusively identified within the gut microbiota of the Lantang pig. These insights not only enhance our understanding of the microbial diversity specific to native Chinese pig breeds but also augment the body of research regarding porcine fiber degradation capabilities. The implications of this study are twofold: it provides strategic directions for optimizing feed efficiency and reducing breeding costs, and it furnishes an expanded gene pool for the microbial synthesis of industrial enzymes in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信