{"title":"添加少量钬的 Nb-Si-Tii-Cr-Al-Ta-Hf 合金的显微结构、压缩性能和氧化行为","authors":"Q. Wang, Yinan Xiao, Di Wu, Fang Yang, L. Sheng","doi":"10.24425/amm.2024.147807","DOIUrl":null,"url":null,"abstract":"In the present research, the Nb-Si-Ti-Cr-Al-Ta-Hf alloys with different Ho addition were prepared. Their microstructure, compressive properties and oxidation behaviors were investigated preliminarily. The results exhibit that the Nb-Si-Ti-Cr-Al-Ta-Hf alloy has coarse microstructure which is mainly composed of Nb solid solution, Nb5Si3 and Ti5Si3 phases. The minor Ho addition could refine the microstructure and suppress the precipitation of Ti5Si3 phase. Moreover, the Ho addition also leads to the formation of Ho2Hf2O7, which prefers to precipitate along the Nbss/Nb5Si3 phase interface. Compared with the Nb-Si-Ti-Cr-Al-Ta-Hf alloy, the minor Ho addition improves the room-temperature and high-temperature compressive properties of the alloy. Its room-temperature compressive strength and ductility obtain the maximum value of 1825 MPa and 16.5% when the Ho content is 0.1 at.%. Moreover, its best compressive strength at 873 K, 1273 K and 1473 K is 1495 MPa, 765 MPa and 380 MPa, respectively, when the Ho addition is 0.1 at.%. The oxidation behavior of the Nb-Si-Ti-Cr-Al-Ta-Hf alloy is diversified with the Ho addition. The oxidation rate of the alloy with 0.1 at.% Ho addition is the lowest while the alloy with 0.2 at.% Ho addition is the highest. Therefore, the 0.1 at.% Ho would be the appropriate content for the Nb-Si-Ti-Cr-Al-Ta-Hf alloy.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure, Compressive Properties and Oxidation Behaviors of the Nb-Si-Ti-Cr-Al-Ta-Hf Alloy with Minor Holmium Addition\",\"authors\":\"Q. Wang, Yinan Xiao, Di Wu, Fang Yang, L. Sheng\",\"doi\":\"10.24425/amm.2024.147807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present research, the Nb-Si-Ti-Cr-Al-Ta-Hf alloys with different Ho addition were prepared. Their microstructure, compressive properties and oxidation behaviors were investigated preliminarily. The results exhibit that the Nb-Si-Ti-Cr-Al-Ta-Hf alloy has coarse microstructure which is mainly composed of Nb solid solution, Nb5Si3 and Ti5Si3 phases. The minor Ho addition could refine the microstructure and suppress the precipitation of Ti5Si3 phase. Moreover, the Ho addition also leads to the formation of Ho2Hf2O7, which prefers to precipitate along the Nbss/Nb5Si3 phase interface. Compared with the Nb-Si-Ti-Cr-Al-Ta-Hf alloy, the minor Ho addition improves the room-temperature and high-temperature compressive properties of the alloy. Its room-temperature compressive strength and ductility obtain the maximum value of 1825 MPa and 16.5% when the Ho content is 0.1 at.%. Moreover, its best compressive strength at 873 K, 1273 K and 1473 K is 1495 MPa, 765 MPa and 380 MPa, respectively, when the Ho addition is 0.1 at.%. The oxidation behavior of the Nb-Si-Ti-Cr-Al-Ta-Hf alloy is diversified with the Ho addition. The oxidation rate of the alloy with 0.1 at.% Ho addition is the lowest while the alloy with 0.2 at.% Ho addition is the highest. Therefore, the 0.1 at.% Ho would be the appropriate content for the Nb-Si-Ti-Cr-Al-Ta-Hf alloy.\",\"PeriodicalId\":8304,\"journal\":{\"name\":\"Archives of Metallurgy and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Metallurgy and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.24425/amm.2024.147807\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Metallurgy and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.24425/amm.2024.147807","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
本研究制备了添加不同 Ho 的 Nb-Si-Ti-Cr-Al-Ta-Hf 合金。初步研究了它们的微观结构、抗压性能和氧化行为。结果表明,Nb-Si-Ti-Cr-Al-Ta-Hf 合金的显微组织较粗,主要由 Nb 固溶体、Nb5Si3 和 Ti5Si3 相组成。少量添加 Ho 可以细化显微组织,抑制 Ti5Si3 相的析出。此外,Ho 的添加还会导致 Ho2Hf2O7 的形成,而 Ho2Hf2O7 更倾向于沿着 Nbss/Nb5Si3 相界面析出。与 Nb-Si-Ti-Cr-Al-Ta-Hf 合金相比,少量添加 Ho 可改善合金的室温和高温抗压性能。当 Ho 含量为 0.1 at.% 时,其室温抗压强度和延展性分别达到 1825 兆帕和 16.5%的最大值。此外,当 Ho 的添加量为 0.1 at.% 时,其在 873 K、1273 K 和 1473 K 下的最佳抗压强度分别为 1495 MPa、765 MPa 和 380 MPa。添加 Ho 后,Nb-Si-Ti-Cr-Al-Ta-Hf 合金的氧化行为变得多样化。添加 0.1 % Ho 的合金氧化率最低,而添加 0.2 % Ho 的合金氧化率最高。因此,对于 Nb-Si-Ti-Cr-Al-Ta-Hf 合金来说,0.1% 的 Ho 含量是合适的。
Microstructure, Compressive Properties and Oxidation Behaviors of the Nb-Si-Ti-Cr-Al-Ta-Hf Alloy with Minor Holmium Addition
In the present research, the Nb-Si-Ti-Cr-Al-Ta-Hf alloys with different Ho addition were prepared. Their microstructure, compressive properties and oxidation behaviors were investigated preliminarily. The results exhibit that the Nb-Si-Ti-Cr-Al-Ta-Hf alloy has coarse microstructure which is mainly composed of Nb solid solution, Nb5Si3 and Ti5Si3 phases. The minor Ho addition could refine the microstructure and suppress the precipitation of Ti5Si3 phase. Moreover, the Ho addition also leads to the formation of Ho2Hf2O7, which prefers to precipitate along the Nbss/Nb5Si3 phase interface. Compared with the Nb-Si-Ti-Cr-Al-Ta-Hf alloy, the minor Ho addition improves the room-temperature and high-temperature compressive properties of the alloy. Its room-temperature compressive strength and ductility obtain the maximum value of 1825 MPa and 16.5% when the Ho content is 0.1 at.%. Moreover, its best compressive strength at 873 K, 1273 K and 1473 K is 1495 MPa, 765 MPa and 380 MPa, respectively, when the Ho addition is 0.1 at.%. The oxidation behavior of the Nb-Si-Ti-Cr-Al-Ta-Hf alloy is diversified with the Ho addition. The oxidation rate of the alloy with 0.1 at.% Ho addition is the lowest while the alloy with 0.2 at.% Ho addition is the highest. Therefore, the 0.1 at.% Ho would be the appropriate content for the Nb-Si-Ti-Cr-Al-Ta-Hf alloy.
期刊介绍:
The Archives of Metallurgy and Materials is covered in the following Institute for Scientific Information products: SciSearch (the Science Citation Index - Expanded), Research Alert, Materials Science Citation Index, and Current Contents / Engineering, Computing and Technology.
Articles published in the Archives of Metallurgy and Materials are also indexed or abstracted by Cambridge Scientific Abstracts.